toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Comadira, G.; Rasool, B.; Karpinska, B.; Morris, J.; Verrall, S.R.; Hedley, P.E.; Foyer, C.H.; Hancock, R.D. url  doi
openurl 
  Title Nitrogen deficiency in barley (Hordeum vulgare) seedlings induces molecular and metabolic adjustments that trigger aphid resistance Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal (up) J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3639-3655  
  Keywords Animals; Aphids/drug effects/*physiology; Biomass; Carbon/pharmacology; Chlorophyll/metabolism; Cluster Analysis; *Disease Resistance/drug effects; Gases/metabolism; Gene Expression Regulation, Plant/drug effects; Hordeum/drug effects/genetics/*parasitology; Nitrogen/*deficiency/metabolism/pharmacology; Oxidation-Reduction/drug effects; Photosynthesis/drug effects; Plant Diseases/genetics/*parasitology; Plant Leaves/drug effects/genetics/metabolism; Plant Proteins/genetics/metabolism; Plant Shoots/drug effects/metabolism; RNA, Messenger/genetics/metabolism; Secondary Metabolism/drug effects; Seedlings/drug effects/*metabolism/*parasitology; Signal Transduction/drug effects; Thylakoids/drug effects/metabolism/parasitology; Transcription Factors/metabolism; Transcriptome/genetics; Cross-tolerance; Myzus persicae; kinase cascades; metabolite profiles; nitrogen limitation; oxidative stress; sugar signalling  
  Abstract Agricultural nitrous oxide (N2O) pollution resulting from the use of synthetic fertilizers represents a significant contribution to anthropogenic greenhouse gas emissions, providing a rationale for reduced use of nitrogen (N) fertilizers. Nitrogen limitation results in extensive systems rebalancing that remodels metabolism and defence processes. To analyse the regulation underpinning these responses, barley (Horedeum vulgare) seedlings were grown for 7 d under N-deficient conditions until net photosynthesis was 50% lower than in N-replete controls. Although shoot growth was decreased there was no evidence for the induction of oxidative stress despite lower total concentrations of N-containing antioxidants. Nitrogen-deficient barley leaves were rich in amino acids, sugars and tricarboxylic acid cycle intermediates. In contrast to N-replete leaves one-day-old nymphs of the green peach aphid (Myzus persicae) failed to reach adulthood when transferred to N-deficient barley leaves. Transcripts encoding cell, sugar and nutrient signalling, protein degradation and secondary metabolism were over-represented in N-deficient leaves while those associated with hormone metabolism were similar under both nutrient regimes with the exception of mRNAs encoding proteins involved in auxin metabolism and responses. Significant similarities were observed between the N-limited barley leaf transcriptome and that of aphid-infested Arabidopsis leaves. These findings not only highlight significant similarities between biotic and abiotic stress signalling cascades but also identify potential targets for increasing aphid resistance with implications for the development of sustainable agriculture.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0957 1460-2431 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4787  
Permanent link to this record
 

 
Author Pilbeam, D.J. url  doi
openurl 
  Title Breeding crops for improved mineral nutrition under climate change conditions Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal (up) J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3511-3421  
  Keywords Breeding/*methods; *Climate Change; Crops, Agricultural/*growth & development; Environment; Minerals/*metabolism; *Nutritional Physiological Phenomena; Micronutrient; nitrogen; nutrient availability; nutrient use efficiency; phosphorus; quantitative trait loci (QTLs)  
  Abstract Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431; 0022-0957 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4575  
Permanent link to this record
 

 
Author Martre, P.; He, J.; Le Gouis, J.; Semenov, M.A. doi  openurl
  Title In silico system analysis of physiological traits determining grain yield and protein concentration for wheat as influenced by climate and crop management Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal (up) J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3581-3598  
  Keywords Climate; *Computer Simulation; Crops, Agricultural/*growth & development/physiology; Edible Grain/*growth & development; Models, Biological; Nitrogen/metabolism; Plant Proteins/*metabolism; Plant Transpiration; Probability; *Quantitative Trait, Heritable; Soil/chemistry; Triticum/growth & development/metabolism/*physiology; Water/chemistry; Crop growth model; genetic adaptation; grain protein concentration; grain yield; interannual variability; sensitivity analysis; wheat (Triticum aestivum L.); yield stability  
  Abstract Genetic improvement of grain yield (GY) and grain protein concentration (GPC) is impeded by large genotype×environment×management interactions and by compensatory effects between traits. Here global uncertainty and sensitivity analyses of the process-based wheat model SiriusQuality2 were conducted with the aim of identifying candidate traits to increase GY and GPC. Three contrasted European sites were selected and simulations were performed using long-term weather data and two nitrogen (N) treatments in order to quantify the effect of parameter uncertainty on GY and GPC under variable environments. The overall influence of all 75 plant parameters of SiriusQuality2 was first analysed using the Morris method. Forty-one influential parameters were identified and their individual (first-order) and total effects on the model outputs were investigated using the extended Fourier amplitude sensitivity test. The overall effect of the parameters was dominated by their interactions with other parameters. Under high N supply, a few influential parameters with respect to GY were identified (e.g. radiation use efficiency, potential duration of grain filling, and phyllochron). However, under low N, >10 parameters showed similar effects on GY and GPC. All parameters had opposite effects on GY and GPC, but leaf and stem N storage capacity appeared as good candidate traits to change the intercept of the negative relationship between GY and GPC. This study provides a system analysis of traits determining GY and GPC under variable environments and delivers valuable information to prioritize model development and experimental work.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431 (Electronic) 0022-0957 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4567  
Permanent link to this record
 

 
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M. doi  openurl
  Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
  Year 2018 Publication Land Degradation & Development Abbreviated Journal (up) Land Degradation & Development  
  Volume 29 Issue 8 Pages 2378-2389  
  Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen  
  Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.  
  Address 2018-10-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1085-3278 ISBN Medium  
  Area Expedition Conference  
  Notes XC, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5210  
Permanent link to this record
 

 
Author Kros, J.; Bakker, M.M.; Reidsma, P.; Kanellopoulos, A.; Jamal Alam, S.; de Vries, W. url  doi
openurl 
  Title Impacts of agricultural changes in response to climate and socioeconomic change on nitrogen deposition in nature reserves Type Journal Article
  Year 2015 Publication Landscape Ecology Abbreviated Journal (up) Landscape Ecol.  
  Volume 30 Issue 5 Pages 871-885  
  Keywords Agricultural adaptation; Climate change; Land use change; Environmental; impact; Farming system; Nitrogen losses; netherlands; diversity; scenario  
  Abstract This paper describes the environmental consequences of agricultural adaptation on eutrophication of the nearby ecological network for a study area in the Netherlands. More specifically, we explored (i) likely responses of farmers to changes in climate, technology, policy, and markets; (ii) subsequent changes in nitrogen (N) emissions in responses to farmer adaptations; and (iii) to what extent the emitted N was deposited in nearby nature reserves, in view of the potential impacts on plant species diversity and desired nature targets. For this purpose, a spatially-explicit study at landscape level was performed by integrating the environmental model INITIATOR, the farm model FSSIM, and the land-use model RULEX. We evaluated two alternative scenarios of change in climate, technology, policy, and markets for 2050: one in line with a ‘global economy’ (GE) storyline and the other in line with a ‘regional communities’ (RC) storyline. Results show that the GE storyline resulted in a relatively strong increase in agricultural production compared to the RC storyline. Despite the projected conversions of agricultural land to nature (as part of the implementation of the National Ecological Network), we project an increase in N losses and N deposition due to N emissions in the study area of about 20 %. Even in the RC storyline, with a relatively modest increase in agricultural production and a larger expansion of the nature reserve, the N losses and deposition remain at the current level, whereas a reduction is required. We conclude that more ambitious green policies are needed in view of nature protection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 1572-9761 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4565  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: