toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cassardo, C.; Andreoli, V. doi  openurl
  Title On the Representativeness of UTOPIA Land Surface Model for Creating a Database of Surface Layer, Vegetation and Soil Variables in Piedmont Vineyards, Italy Type Journal Article
  Year 2019 Publication Applied Sciences-Basel Abbreviated Journal Applied Sciences-Basel  
  Volume 9 Issue 18 Pages 3880  
  Keywords land-surface; UTOPIA; NOAH; GLDAS; micrometeorology; exchanges; processes; vineyards; cabernet-sauvignon; climate-change; wine color; temperature; parameterization; simulations; circulation; balances; moisture; sunlight  
  Abstract The main aim of the paper is to show how, and how many, simulations carried out using the Land Surface Model UTOPIA (University of TOrino model of land Process Interaction with Atmosphere) are representative of the micro-meteorological conditions and exchange processes at the atmosphere/biosphere interface, with a particular focus on heat and hydrologic transfers, over an area of the Piemonte (Piedmont) region, NW Italy, which is characterized by the presence of many vineyards. Another equally important aim is to understand how much the quality of the simulation outputs was influenced by the input data, whose measurements are often unavailable for long periods over country areas at an hourly basis. Three types of forcing data were used: observations from an experimental campaign carried out during the 2008, 2009, and 2010 vegetative seasons in three vineyards, and values extracted from the freely available Global Land Data Assimilation System (GLDAS, versions 2.0 and 2.1). Since GLDAS also contains the outputs of the simulations performed using the Land Surface Model NOAH, an additional intercomparison between the two models, UTOPIA and NOAH, both driven by the same GLDAS datasets, was performed. The intercomparisons were performed on the following micro-meteorological variables: net radiation, sensible and latent turbulent heat fluxes, and temperature and humidity of soil. The results of this study indicate that the methodology of employing land surface models driven by a gridded database to evaluate variables of micro-meteorological and agronomic interest in the absence of observations is suitable and gives satisfactory results, with uncertainties comparable to measurement errors, thus, allowing us to also evaluate some time trends. The comparison between GLDAS2.0 and GLDAS2.1 indicates that the latter generally produces simulation outputs more similar to the observations than the former, using both UTOPIA and NOAH models.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 5228  
Permanent link to this record
 

 
Author Doro, L.; Jones, C.; Williams, J.R.; Norfleet, M.L.; Izaurralde, R.C.; Wang, X.; Jeong, J. doi  openurl
  Title The Variable Saturation Hydraulic Conductivity Method for Improving Soil Water Content Simulation in EPIC and APEX Models Type Journal Article
  Year 2017 Publication Vadose Zone Journal Abbreviated Journal Vadose Zone Journal  
  Volume 16 Issue 13 Pages  
  Keywords Conservation Effects Assessment; Runoff Simulation; Unsaturated Soils; United-States; Porous-Media; Moisture; Flow; Productivity; Transport; Denitrification  
  Abstract Soil water percolation is a key process in the life cycle of water in fields, watersheds, and river basins. The Environmental Policy Integrated Climate (EPIC) and the Agricultural Policy/Environmental eXtender (APEX) are continuous models developed for evaluating the environmental effects of agricultural management. Traditionally, these models have simulated soil water percolation processes using a tipping-bucket approach, with the rate of flow limited by the saturated hydraulic conductivity. This simple approach often leads to inaccuracy in simulating elevated soil water conditions where soil water content (SWC) levels may remain above field capacity under prolonged wet weather periods or limited drainage. To overcome this deficiency, a new sub-model, the variable saturation hydraulic conductivity (VSHC) method, was developed for simulating soil water percolation processes using a nonlinear equation to estimate the effective hydraulic conductivity as a function of the SWC and soil properties. The VSHC method was evaluated at three sites in the United States and two sites in Europe. In addition, a numerical solution of the Richards equation was used as a benchmark for SWC comparison. Results show that the VSHC method substantially improves the accuracy of the SWC simulation in long-term simulations, particularly during wet periods. At the watershed scale, results on the Riesel Y2 watershed indicate that the VSHC method enhances model performance in the high-flow regime of channel peak flows because of the improved estimation of SWC, which implies that the improved SWC simulation at the field scale is beneficial to hydrologic modeling at the watershed scale.  
  Address 2018-09-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1539-1663 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 5208  
Permanent link to this record
 

 
Author Rötter, R.P.; Appiah, M.; Fichtler, E.; Kersebaum, K.C.; Trnka, M.; Hoffmann, M.P. doi  openurl
  Title Linking modelling and experimentation to better capture crop impacts of agroclimatic extremes-A review Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal  
  Volume 221 Issue Pages 142-156  
  Keywords ft_macsur; Agroclimatic extremes; Crop model; Heat; Drought; Heavy rain; Anthropogenic Climate-Change; Head-Emergence Frost; Weather Extremes; Wheat Yields; Temperature Variability; Induced Sterility; Food Security; Soil-Moisture; Plant-Growth; Winter-Wheat  
  Abstract Climate change implies higher frequency and magnitude of agroclimatic extremes threatening plant production and the provision of other ecosystem services. This review is motivated by a mismatch between advances made regarding deeper understanding of abiotic stress physiology and its incorporation into ecophysiological models in order to more accurately quantifying the impacts of extreme events at crop system or higher aggregation levels. Adverse agroclimatic extremes considered most detrimental to crop production include drought, heat, heavy rains/hail and storm, flooding and frost, and, in particular, combinations of them. Our core question is: How have and could empirical data be exploited to improve the capability of widely used crop simulation models in assessing crop impacts of key agroclimatic extremes for the globally most important grain crops? To date there is no comprehensive review synthesizing available knowledge for a broad range of extremes, grain crops and crop models as a basis for identifying research gaps and prospects. To address these issues, we selected eight major grain crops and performed three systematic reviews using SCOPUS for period 1995-2016. Furthermore, we amended/complemented the reviews manually and performed an in-depth analysis using a sub-sample of papers. Results show that by far the majority of empirical studies (1631 out of 1772) concentrate on the three agroclimatic extremes drought, heat and heavy rain and on the three major staples wheat, maize and rice (1259 out of 1772); the concentration on just a few has increased over time. With respect to modelling studies two model families, i.e. CERES-DSSAT and APSIM, are dearly dominating for wheat and maize; for rice, ORYZA2000 and CERES-Rice predominate and are equally strong. For crops other than maize and wheat the number of studies is small. Empirical and modelling papers don’t differ much in the proportions the various extreme events are dealt with drought and heat stress together account for approx. 80% of the studies. There has been a dramatic increase in the number of papers, especially after 2010. As a way forward, we suggest to have very targeted and well-designed experiments on the specific crop impacts of a given extreme as well as of combinations of them. This in particular refers to extremes addressed with insufficient specificity (e.g. drought) or being under-researched in relation to their economic importance (heavy rains/storm and flooding). Furthermore, we strongly recommend extending research to crops other than wheat, maize and rice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number MA @ admin @ Serial (down) 5199  
Permanent link to this record
 

 
Author Yin, X.G.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Ozturk, I.; Gaiser, T.; Wu, L.H.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I.G.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nende, C.; Pacholskin, A.; Palosuo, T.; Ripoche-Wachter, D.; Rotter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Weigel, H.J.; Olesen, J.E.; Yin, X.; Kersebaum, K.C.; Kollas, C.; Manevski, K.; Baby, S.; Beaudoin, N.; Ozturk, I.; Gaiser, T.; Wu, L.; Hoffmann, M.; Charfeddine, M.; Conradt, T.; Constantin, J.; Ewert, F.; de Cortazar-Atauri, I.G.; Giglio, L.; Hlavinka, P.; Hoffmann, H.; Launay, M.; Louarn, G.; Manderscheid, R.; Mary, B.; Mirschel, W.; Nende, C.; Pacholskin, A.; Palosuo, T.; Ripoche-Wachter, D.; Roetter, R.P.; Ruget, F.; Sharif, B.; Trnka, M.; Ventrella, D.; Weigel, H.-J.; Olesen, J.E. doi  openurl
  Title Performance of process-based models for simulation of grain N in crop rotations across Europe Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 154 Issue Pages 63-77  
  Keywords Calibration, Crop model, Crop rotation, Grain N content, Model evaluation, Model initialization; Climate-Change; Winter-Wheat; Nitrogen-Fertilization; Agroecosystem; Models; Multimodel Ensembles; Yield Response; Use Efficiency; Soil-Moisture; Oilseed Rape; Elevated Co2  
  Abstract The accurate estimation of crop grain nitrogen (N; N in grain yield) is crucial for optimizing agricultural N management, especially in crop rotations. In the present study, 12 process-based models were applied to simulate the grain N of i) seven crops in rotations, ii) across various pedo-climatic and agro-management conditions in Europe, under both continuous simulation and single year simulation, and for iv) two calibration levels, namely minimal and detailed calibration. Generally, the results showed that the accuracy of the simulations in predicting grain N increased under detailed calibration. The models performed better in predicting the grain N of winter wheat (Triticum aestivum L.), winter barley (Hordewn vulgare L.) and spring barley (Hordeum vulgare L.) compared to spring oat (Avena saliva L.), winter rye (Secale cereale L.), pea (Piswn sativum L.) and winter oilseed rape (Brassica napus L.). These differences are linked to the intensity of parameterization with better parameterized crops showing lower prediction errors. The model performance was influenced by N fertilization and irrigation treatments, and a majority of the predictions were more accurate under low N and rainfed treatments. Moreover, the multi-model mean provided better predictions of grain N compared to any individual model. In regard to the Individual models, DAISY, FASSET, HERMES, MONICA and STICS are suitable for predicting grain N of the main crops in typical European crop rotations, which all performed well in both continuous simulation and single year simulation. Our results show that both the model initialization and the cover crop effects in crop rotations should be considered in order to achieve good performance of continuous simulation. Furthermore, the choice of either continuous simulation or single year simulation should be guided by the simulation objectives (e.g. grain yield, grain N content or N dynamics), the crop sequence (inclusion of legumes) and treatments (rate and type of N fertilizer) included in crop rotations and the model formalism.  
  Address 2017-06-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial (down) 4963  
Permanent link to this record
 

 
Author Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P. doi  openurl
  Title Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system Type Journal Article
  Year 2017 Publication Catena Abbreviated Journal Catena  
  Volume 151 Issue Pages 202-212  
  Keywords Biomass; C turnover; GHG emission; Microbial activity; Soil moisture; Organic-Matter Dynamics; Co2 Efflux; N Fertilization; Forage Systems; Winter-Wheat; Nitrogen; Temperature; Forest; Water; Root  
  Abstract Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg(-1)). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 121,1111 1 111(-2) s(-1). On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (-2.9 t ha(-1)). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-03-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial (down) 4939  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: