toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Park, S.K.; Sungmin, O.; Cassardo, C. doi  openurl
  Title Soil temperature response in Korea to a changing climate using a land surface model Type Journal Article
  Year (down) 2017 Publication Asia-Pacific Journal of Atmospheric Sciences Abbreviated Journal Asia-Pacific Journal of Atmospheric Sciences  
  Volume 53 Issue 4 Pages 457-470  
  Keywords Land surface process; soil temperature; climate change; soil-vegetation-atmosphere transfer (SVAT) scheme; University of TOrino model of land Process Interaction with Atmosphere (UTOPIA); REGIONAL CLIMATE; SNOW COVER; WATER-RESOURCES; SOCIOECONOMIC SCENARIOS; QUANTITATIVE-ANALYSIS; MESOSCALE MODEL; SRES EMISSIONS; FUTURE CLIMATE; CHANGE IMPACTS; SOUTH-AMERICA  
  Abstract The land surface processes play an important role in weather and climate systems through its regulation of radiation, heat, water and momentum fluxes. Soil temperature (ST) is one of the most important parameters in the land surface processes; however, there are few extensive measurements of ST with a long time series in the world. According to the CLImatology of Parameters at the Surface (CLIPS) methodology, the output of a trusted Soil-Vegetation- Atmosphere Transfer (SVAT) scheme can be utilized instead of observations to investigate the regional climate of interest. In this study, ST in South Korea is estimated in a view of future climate using the output from a trusted SVAT scheme – the University of TOrino model of land Process Interaction with Atmosphere (UTOPIA), which is driven by a regional climate model. Here characteristic changes in ST are analyzed under the IPCC A2 future climate for 2046-2055 and 2091-2100, and are compared with those under the reference climate for 1996-2005. The UTOPIA results were validated using the observed ST in the reference climate, and the model proved to produce reasonable ST in South Korea. The UTOPIA simulations indicate that ST increases due to environmental change, especially in air temperature (AT), in the future climate. The increment of ST is proportional to that of AT except for winter. In wintertime, the ST variations are different from region to region mainly due to variations in snow cover, which keeps ST from significant changes by the climate change.  
  Address 2017-12-21  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1976-7633 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5182  
Permanent link to this record
 

 
Author Weindl, I.; Bodirsky, B.L.; Rolinski, S.; Biewald, A.; Lotze-Campen, H.; Muller, C.; Dietrich, J.P.; Humpenoder, F.; Stevanovic, M.; Schaphoff, S.; Popp, A. doi  openurl
  Title Livestock production and the water challenge of future food supply: Implications of agricultural management and dietary choices Type Journal Article
  Year (down) 2017 Publication Global Environmental Change-Human and Policy Dimensions Abbreviated Journal Global Environmental Change-Human and Policy Dimensions  
  Volume 47 Issue Pages 121-132  
  Keywords Livestock; Productivity; Dietary changes; Consumptive water use; Water scarcity; Water resources; Climate-Change Mitigation; Greenhouse-Gas Emissions; Global Vegetation; Model; Land-Use; Comprehensive Assessment; Fresh-Water; Systems; Requirements; Irrigation; Carbon  
  Abstract Human activities use more than half of accessible freshwater, above all for agriculture. Most approaches for reconciling water conservation with feeding a growing population focus on the cropping sector. However, livestock production is pivotal to agricultural resource use, due to its low resource-use efficiency upstream in the food supply chain. Using a global modelling approach, we quantify the current and future contribution of livestock production, under different demand-and supply-side scenarios, to the consumption of “green” precipitation water infiltrated into the soil and “blue” freshWater withdrawn from rivers, lakes and reservoirs. Currently, cropland feed production accounts for 38% of crop water consumption and grazing involves 29% of total agricultural water consumption (9990 km(3) yr(-1)). Our analysis shows that changes in diets and livestock productivity have substantial implications for future consumption of agricultural blue water (19-36% increase compared to current levels) and green water (26-69% increase), but they can, at best, slow down trends of rising water requirements for decades to come. However, moderate productivity reductions in highly intensive livestock systems are possible without aggravating water scarcity. Productivity gains in developing regions decrease total agricultural water consumption, but lead to expansion of irrigated agriculture, due to the shift from grassland/green water to cropland/blue water resources. While the magnitude of the livestock water footprint gives cause for concern, neither dietary choices nor changes in livestock productivity will solve the water challenge of future food supply, unless accompanied by dedicated water protection policies.  
  Address 2018-01-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5183  
Permanent link to this record
 

 
Author Luo, K.; Tao, F.; Deng, X.; Moiwo, J.P. doi  openurl
  Title Changes in potential evapotranspiration and surface runoff in 1981-2010 and the driving factors in Upper Heihe River Basin in Northwest China Type Journal Article
  Year (down) 2017 Publication Hydrological Processes Abbreviated Journal Hydrol. Process.  
  Volume 31 Issue 1 Pages 90-103  
  Keywords driving factor; potential evaporation; surface runoff; SWAT model; Upper Heihe River Basin; SWAT Hydrologic Model; Pan Evaporation; Vegetation Model; Climate-Change; Water; Trends; Precipitation; Uncertainty; Variability; Generation  
  Abstract Changes in potential evapotranspiration and surface runoff can have profound implications for hydrological processes in arid and semiarid regions. In this study, we investigated the response of hydrological processes to climate change in Upper Heihe River Basin in Northwest China for the period from 1981 to 2010. We used agronomic, climatic and hydrological data to drive the Soil and Water Assessment Tool model for changes in potential evapotranspiration (ET0) and surface runoff and the driving factors in the study area. The results showed that increasing autumn temperature increased snow melt, resulting in increased surface runoff, especially in September and October. The spatial distribution of annual runoff was different from that of seasonal runoff, with the highest runoff in Yeniugou River, followed by Babaohe River and then the tributaries in the northern of the basin. There was no evaporation paradox at annual and seasonal time scales, and annual ET0 was driven mainly by wind speed. ET0 was driven by relative humidity in spring, sunshine hour duration in autumn and both sunshine hour duration and relative humility in summer. Surface runoff was controlled by temperature in spring and winter and by precipitation in summer (flood season). Although surface runoff increased in autumn with increasing temperature, it depended on rainfall in September and on temperature in October and November. Copyright (C) 2016 John Wiley & Sons, Ltd.  
  Address 2018-08-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0885-6087 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5207  
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year (down) 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
 

 
Author Sándor, R.; Barcza, Z.; Hidy, D.; Lellei-Kovács, E.; Ma, S.; Bellocchi, G. url  doi
openurl 
  Title Modelling of grassland fluxes in Europe: evaluation of two biogeochemical models Type Journal Article
  Year (down) 2016 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 215 Issue Pages 1-19  
  Keywords carbon-water fluxes; climate change; grasslands; model comparison; net ecosystem exchange; terrestrial carbon balance; pasture simulation-model; climate-change; nitrous-oxide; land-use; co2; photosynthesis; responses; water  
  Abstract Two independently developed simulation models – the grassland-specific PaSim and the biome-generic Biome-BGC MuSo (BBGC MuSo) – linking climate, soil, vegetation and management to ecosystem biogeochemical cycles were compared in a simulation of carbon (C) and water fluxes. The results were assessed against eddy-covariance flux data from five observational grassland sites representing a range of conditions in Europe: Grillenburg in Germany, Laqueuille in France with both extensive and intensive management, Monte Bondone in Italy and Oensingen in Switzerland. Model comparison (after calibration) gave substantial agreement, the performances being marginal to acceptable for weekly-aggregated gross primary production and ecosystem respiration (R-2 similar to 0.66 – 0.91), weekly evapotranspiration (R-2 similar to 0.78 – 0.94), soil water content in the topsoil (R-2 similar to 0.1 -0.7) and soil temperature (R-2 similar to 0.88 – 0.96). The bias was limited to the range -13 to 9 g C m(-2) week(-1) for C fluxes (-11 to 8 g C m(-2) week(-1) in case of BBGC MuSo, and -13 to 9 g C m(-2) week(-1) in case of PaSim) and -4 to 6 mm week for water fluxes (with BBGC MuSo providing somewhat higher estimates than PaSim), but some higher relative root mean square errors indicate low accuracy for prediction, especially for net ecosystem exchange The sensitivity of simulated outputs to changes in atmospheric carbon dioxide concentration ([CO2]), temperature and precipitation indicate, with certain agreement between the two models, that C outcomes are dominated by [CO2] and temperature gradients, and are less due to precipitation. ET rates decrease with increasing [CO2] in PaSim (consistent with experimental knowledge), while lack of appropriate stomatal response could be a limit in BBGC MuSo responsiveness. Results of the study indicate that some of the errors might be related to the improper representation of soil water content and soil temperature. Improvement is needed in the model representations of soil processes (especially soil water balance) that strongly influence the biogeochemical cycles of managed and unmanaged grasslands. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4808  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: