toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dumont, B.; Basso, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Climatic risk assessment to improve nitrogen fertilisation recommendations: A strategic crop model-based approach Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 65 Issue (up) Pages 10-17  
  Keywords climatic variability; stochastically generated weather; lars-wg; crop model; stics; nitrogen management; yield skewness; wheat yield; generic model; stics; management; variability; simulation; field; balances; impact  
  Abstract Within the context of nitrogen (N) management, since 1950, with the rapid intensification of agriculture, farmers have often applied much larger fertiliser quantities than what was required to reach the yield potential. However, to prevent pollution of surface and groundwater induced by nitrates, The European Community launched The European Nitrates Directive 91/6/76/EEC. In 2002, in Wallonia (Belgium), the Nitrates Directive has been transposed under the Sustainable Nitrogen Management in Agriculture Program (PGDA), with the aim of maintaining productivity and revenue for the country’s farmers, while reducing the environmental impact of excessive N application. A feasible approach for addressing climatic uncertainty lies in the use of crop models such as the one commonly known as STICS (simulateur multidisciplinaire pour les cultures standard). These models allow the impact on crops of the interaction between cropping systems and climatic records to be assessed. Comprehensive historical climatic records are rare, however, and therefore the yield distribution values obtained using such an approach can be discontinuous. In order to obtain better and more detailed yield distribution information, the use of a high number of stochastically generated climate time series was proposed, relying on the LARS-Weather Generator. The study focused on the interactions between varying N practices and climatic conditions. Historically and currently, Belgian farmers apply 180 kg N ha(-1), split into three equal fractions applied at the tillering, stem elongation and flag-leaf stages. This study analysed the effectiveness of this treatment in detail, comparing it to similar practices where only the N rates applied at the flag-leaf stage were modified. Three types of farmer decision-making were analysed. The first related to the choice of N strategy for maximising yield, the second to obtaining the highest net revenue, and the third to reduce the environmental impact of potential N leaching, which carries the likelihood of taxation if inappropriate N rates are applied. The results showed reduced discontinuity in the yield distribution values thus obtained. In general, the modulation of N levels to accord with current farmer practices showed considerable asymmetry. In other words, these practices maximised the probability of achieving yields that were at least superior to the mean of the distribution values, thus reducing risk for the farmers. The practice based on applying the highest amounts (60-60-100 kg N ha(-1)) produced the best yield distribution results. When simple economical criteria were computed, the 60-60-80 kg N ha(-1) protocol was found to be optimal for 80-90% of the time. There were no statistical differences, however, between this practice and Belgian farmers’ current practice. When the taxation linked to a high level of potentially leachable N remaining in the soil after harvest was considered, this methodology clearly showed that, in 3 years out of 4,30 kg N ha(-1) could systematically be saved in comparison with the usual practice.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4646  
Permanent link to this record
 

 
Author Dumont, B.; Basso, B.; Leemans, V.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title A comparison of within-season yield prediction algorithms based on crop model behaviour analysis Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 204 Issue (up) Pages 10-21  
  Keywords stics crop model; climate variability; lars-wg; yield prediction; log-normal distribution; convergence in law theorem; central limit theorem; weather generator; nitrogen balances; generic model; wheat; simulation; climate; stics; variability; skewness; efficiency  
  Abstract The development of methodologies for predicting crop yield, in real-time and in response to different agro-climatic conditions, could help to improve the farm management decision process by providing an analysis of expected yields in relation to the costs of investment in particular practices. Based on the use of crop models, this paper compares the ability of two methodologies to predict wheat yield (Triticum aestivum L.), one based on stochastically generated climatic data and the other on mean climate data. It was shown that the numerical experimental yield distribution could be considered as a log-normal distribution. This function is representative of the overall model behaviour. The lack of statistical differences between the numerical realisations and the logistic curve showed in turn that the Generalised Central Limit Theorem (GCLT) was applicable to our case study. In addition, the predictions obtained using both climatic inputs were found to be similar at the inter and intra-annual time-steps, with the root mean square and normalised deviation values below an acceptable level of 10% in 90% of the climatic situations. The predictive observed lead-times were also similar for both approaches. Given (i) the mathematical formulation of crop models, (ii) the applicability of the CLT and GLTC to the climatic inputs and model outputs, respectively, and (iii) the equivalence of the predictive abilities, it could be concluded that the two methodologies were equally valid in terms of yield prediction. These observations indicated that the Convergence in Law Theorem was applicable in this case study. For purely predictive purposes, the findings favoured an algorithm based on a mean climate approach, which needed far less time (by 300-fold) to run and converge on same predictive lead time than the stochastic approach. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4647  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. doi  openurl
  Title A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark Type Journal Article
  Year 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 187 Issue (up) Pages 1-13  
  Keywords Winter wheat; Climate change; Adaptation; Uncertainty; Europe; food security; model hadgem1; physical-properties; regional climate; change impacts; field-scale; land-use; yield; nitrogen; variability  
  Abstract Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4630  
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. url  doi
openurl 
  Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue (up) Pages 47-56  
  Keywords simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield  
  Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4631  
Permanent link to this record
 

 
Author Persson, T.; Höglind, M.; Gustavsson, A.-M.; Halling, M.; Jauhiainen, L.; Niemeläinen, O.; Thorvaldsson, G.; Virkajärvi, P. doi  openurl
  Title Evaluation of the LINGRA timothy model under Nordic conditions Type Journal Article
  Year 2014 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 161 Issue (up) Pages 87-97  
  Keywords crop model; forage grass; perennial ley; simulation model; nutritive-value; climate-change; systems simulation; growth; dynamics; crop; performance; regrowth; calibration; pastures  
  Abstract Simulation models are frequently applied to determine the production potential of forage grasses under various scenarios, including climate change. Thorough calibrations and evaluations of forage grass models can help improve their applicability. This study evaluated the ability of the Light Interception and Utilization Simulator-GRAss (LINGRA) model to predict biomass yield of timothy (Phleum pratense L. cv. Grindstad) in the Nordic countries. Variety trial data for the first and second year after establishment were obtained for seven locations: Jokioinen, Finland (60 degrees 48 ‘ N; 23 degrees 29 ‘ E), Maaninka, Finland (63 degrees 09 ‘ N; 27 degrees 18 ‘ E), Korpa, Iceland (64 degrees 09 ‘ N; 21 degrees 45 ‘ W), Srheim, Norway (58 degrees 41 ‘ N; 5 degrees 39 ‘ E), Lillerud, Sweden (59 degrees 24’ N; 13 degrees 16 ‘ E), Ostersund, Sweden (63 degrees 15 ‘ N; 14 degrees 34 ‘ E) and Ulna Sweden (63 degrees 49 ‘ N; 20 degrees 13 ‘ E) from 1992 to 2012. Two calibrations of the LINGRA model were carried out using Bayesian techniques. In the first of these (SRrheim calibration), data on biomass yield and underlying variables obtained from independent field trials at Srheim were used. In the second (Nordic calibration), biomass data from the other locations were used as well. The model was validated against the remaining set of biomass yields from all locations not included in the Nordic calibration. The observed total seasonal yield the first and second year after establishment was 913 and 991 g DM m(-2) respectively on average across the locations. The corresponding average simulated yield after the Srheim calibration was 1044 (root mean square error (RMSE) 258) and 1112 g DM m(-2) (RMSE 312), respectively. After the Nordic calibration, the simulated average total seasonal yield was 863 (RMSE 242) the first year and 927 g DM m(-2) (RMSE 271) the second year after establishment. The differences between the observed and simulated first cut yield followed the same patterns, whereas the prediction accuracy for second cut yield did not differ substantially between the calibration approaches.Using the parameter set from the Nordic region decreased the model predictability at Srheim compared with only using model parameters derived from this location. These results show that using biomass data from several locations, instead of only one specific location, in the calibration of the LINGRA model improved the overall prediction accuracy of first cut dry matter yield and total seasonal dry matter yield across an environmentally heterogeneous region. To further analyse the usefulness of including multi-site data in forage grass model calibrations, other forage grass models could be evaluated against the same dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4634  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: