|   | 
Details
   web
Records
Author (down) Zhao, G.; Hoffmann, H.; van Bussel, L.G.J.; Enders, A.; Specka, X.; Sosa, C.; Yeluripati, J.; Tao, F.L.; Constantin, J.; Raynal, H.; Teixeira, E.; Grosz, B.; Doro, L.; Zhao, Z.G.; Nendel, C.; Kiese, R.; Eckersten, H.; Haas, E.; Vanuytrecht, E.; Wang, E.; Kuhnert, M.; Trombi, G.; Moriondo, M.; Bindi, M.; Lewan, E.; Bach, M.; Kersebaum, K.C.; Rotter, R.; Roggero, P.P.; Wallach, D.; Cammarano, D.; Asseng, S.; Krauss, G.; Siebert, S.; Gaiser, T.; Ewert, F.
Title Effect of weather data aggregation on regional crop simulation for different crops, production conditions, and response variables Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 141-157
Keywords crop model; model comparison; spatial resolution; data aggregation; spatial heterogeneity; scaling; climate-change scenarios; sub-saharan africa; winter-wheat; spatial-resolution; yield response; input data; systems simulation; large-scale; soil data; part i
Abstract We assessed the weather data aggregation effect (DAE) on the simulation of cropping systems for different crops, response variables, and production conditions. Using 13 process-based crop models and the ensemble mean, we simulated 30 yr continuous cropping systems for 2 crops (winter wheat and silage maize) under 3 production conditions for the state of North Rhine-Westphalia, Germany. The DAE was evaluated for 5 weather data resolutions (i.e. 1, 10, 25, 50, and 100 km) for 3 response variables including yield, growing season evapotranspiration, and water use efficiency. Five metrics, viz. the spatial bias (Delta), average absolute deviation (AAD), relative AAD, root mean squared error (RMSE), and relative RMSE, were used to evaluate the DAE on both the input weather data and simulated results. For weather data, we found that data aggregation narrowed the spatial variability but widened the., especially across mountainous areas. The DAE on loss of spatial heterogeneity and hotspots was stronger than on the average changes over the region. The DAE increased when coarsening the spatial resolution of the input weather data. The DAE varied considerably across different models, but changed only slightly for different production conditions and crops. We conclude that if spatially detailed information is essential for local management decision, higher resolution is desirable to adequately capture the spatial variability for heterogeneous regions. The required resolution depends on the choice of the model as well as the environmental condition of the study area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4754
Permanent link to this record
 

 
Author (down) Zhang, W.; Liu, C.; Zheng, X.; Zhou, Z.; Cui, F.; Zhu, B.; Haas, E.; Klatt, S.; Butterbach-Bahl, K.; Kiese, R.
Title Comparison of the DNDC, LandscapeDNDC and IAP-N-GAS models for simulating nitrous oxide and nitric oxide emissions from the winter wheat–summer maize rotation system Type Journal Article
Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 140 Issue Pages 1-10
Keywords Model ensemble; Straw incorporation; Irrigation; Fertilization; Calcareous soil; North China Plain; process-oriented model; soil organic-matter; biogeochemical model; cropping system; N2O emissions; forest soils; microbial-growth; rainfall events; calcareous soil
Abstract The DNDC, LandscapeDNDC and IAP-N-GAS models have been designed to simulate the carbon and nitrogen processes of terrestrial ecosystems. Until now, a comparison of these models using simultaneous observations has not been reported, although such a comparison is essential for further model development and application. This study aimed to evaluate the performance of the models, delineate the strengths and limitations of each model for simulating soil nitrous oxide (N2O) and nitric oxide (NO) emissions, and explore short-comings of these models that may require reconsideration. We conducted comparisons among the models using simultaneous observations of both gases and relevant variables from the winter wheat-summer maize rotation system at three field sites with calcareous soils. Simulations of N2O and NO emissions by the three models agreed well with annual observations, but not with daily observations. All models failed to correctly simulate soil moisture, which could explain some of the incorrect daily fluxes of N2O and NO, especially for intensive fluxes during the growing season. Multi-model ensembles are promising approaches to better simulate daily gas emissions. IAP-N-GAS underestimated the priming effect of straw incorporation on N2O and NO emissions, but better results were obtained with DNDC95 and LandscapeDNDC. LandscapeDNDC and IAP-N-GAS need to improve the simulation of irrigation water allocation and residue decomposition processes, respectively, and together to distinguish different irrigation methods as DNDC95 does. All three models overestimated the emissions of the nitrogenous gases for high nitrogen fertilizer (>430 kg N ha(-1) yr(-1)) addition treatments, and therefore, future research should focus more on the simulation of the limitation of soil dissolvable organic carbon on denitrification in calcareous soils.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308-521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4685
Permanent link to this record
 

 
Author (down) Zhang, S.; Tao, F.; Zhang, Z.
Title Uncertainty from model structure is larger than that from model parameters in simulating rice phenology in China Type Journal Article
Year 2017 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 87 Issue Pages 30-39
Keywords Crop model, Extreme weather, Impacts, Rice development rate, Uncertainty; Climate-Change; Growth Duration; Crop Model; Ceres-Rice; Wheat; Temperature; Impact; Yield; Optimization; Performance
Abstract Rice models have been widely used in simulating and predicting rice phenology in contrasting climate zones, however the uncertainties from model structure (different equations or models) and/or model parameters were rarely investigated. Here, five rice phenological models/modules (Le., CERES-Rice, ORYZA2000, RCM, Beta Model and SIMRIW) were applied to simulate rice phenology at 23 experimental stations from 1992 to 2009 in two major rice cultivation regions of China: the northeastern China and the southwestern China. To investigate the uncertainties from model biophysical parameters, each model was run with randomly perturbed 50 sets of parameters. The results showed that the median of ensemble simulations were better than the simulation by most models. Models couldn’t simulate well in some specific years despite of parameters optimization, suggesting model structure limit model performance in some cases. The models adopting accumulative thermal time function (e.g., CERES-Rice and ORYZA2000) had better performance in the southwestern China, in contrast, those adopting exponential function (e.g., Beta model and RCM model) had better performance in the northeastern China. In northeastern China, the contribution of model structure and model parameters to model total variance was, respectively, about 55.90% and 44.10% in simulating heading date, and about 75.43% and 24.57% in simulating maturity date. In the southwestern China, the contribution of model structure and model parameters to model total variance was, respectively, about 79.97% and 27.03% in simulating heading date, about 92.15% and 7.85% in simulating maturity date. Uncertainty from model structure was the most relevant source. The results highlight that the temperature response functions of rice development rate under extreme climate conditions should be improved based on environment-controlled experimental data.
Address 2017-08-07
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5170
Permanent link to this record
 

 
Author (down) Zhai, R.; Tao, F.
Title Contributions of climate change and human activities to runoff change in seven typical catchments across China Type Journal Article
Year 2017 Publication Science of the Total Environment Abbreviated Journal Sci. Tot. Environ.
Volume 605 Issue Pages 219-229
Keywords Catchments; Detection; Attribution; Runoff; VIC; Water resource; Weihe River-Basin; Hydrologic Response; Temporal-Changes; Loess Plateau; United-States; Yellow-River; Streamflow; Impacts; Variability; Model
Abstract Climate change and human activities are two major factors affecting water resource change. It is important to understand the roles of the major factors in affecting runoff change in different basins for watershed management. Here, we investigated the trends in climate and runoff in seven typical catchments in seven basins across China from 1961 to 2014. Then we attributed the runoff change to climate change and human activities in each catchment and in three time periods (1980s, 1990s and 2000s), using the VIC model and long-term runoff observation data. During 1961-2014, temperature increased significantly, while the trends in precipitation were insignificant in most of the catchments and inconsistent among the catchments. The runoff in most of the catchments showed a decreasing trend except the Yingluoxia catchment in the northwestern China. The contributions of climate change and human activities to runoff change varied in different catchments and time periods. In the 1980s, climate change contributed more to runoff change than human activities, which was 84%, 59%,-66%,-50%, 59%, 94%, and -59% in the Nianzishan, Yingluoxia, Xiahui, Yangjiaping, Sanjiangkou, Xixian, and Changle catchment, respectively. After that, human activities had played a more essential role in runoff change. In the 1990s and 2000s, human activities contributed more to runoff change than in the 1980s. The contribution by human activities accounted for 84%,- 68%, and 67% in the Yingluoxia, Xiahui, and Sanjiangkou catchment, respectively, in the 1990s; and -96%,-67%,-94%, and -142% in the Nianzishan, Yangjiaping, Xixian, and Changle catchment, respectively, in the 2000s. It is also noted that after 2000 human activities caused decrease in runoff in all catchments except the Yingluoxia. Our findings highlight that the effects of human activities, such as increase in water withdrawal, land use/cover change, operation of dams and reservoirs, should be well managed. (C) 2017 Elsevier B.V. All rights reserved.
Address 2017-09-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5177
Permanent link to this record
 

 
Author (down) Żarski, J.; Dudek, S.; Kuśmierek-Tomaszewska, R.; Bojar, W.; Knopik, L.; Żarski, W.
Title Agroklimatologiczna ocena opadów atmosferycznych okresu wegetacyjnego w rejonie Bydgoszczy (Agro-climatological assessment of the growing season rainfall in the Bydgoszcz region) Type Journal Article
Year 2014 Publication Infrastruktura i Ekologia Terenów Wiejskich (Infrastructure and Ecology of Rural Areas) Abbreviated Journal Infrastruktura i Ekologia Terenów Wiejskich (Infrastructure and Ecology of Rural Areas)
Volume Ii Issue 3 Pages 643-656
Keywords rainfall; growing season; Bydgoszcz region; weather-yield model
Abstract The aim of the research was an agro-climatologic assessment of the amount of rainfall on a local scale, mainly aimed to identify trends in their changes and a possible rise in their variability over time. In the studies also we wanted to demonstrate the impact of the amount of rainfall in the region of Bydgoszcz on the yield of some crops. Material for the study consists of rainfall measurements, carried out in a stand- ard way in the years 1981-2010 at the Research Station of the University of Technology and Life Sciences in Bydgoszcz. Station is located in the village of Mochle, located approximately 20 km from the city centre (φ=53013’ N, λ=17051’E, h=98.5 m above sea level) in sparsely urbanized and industrialized area. We also used data of the yield of selected crops (potato, barley, corn for grain, legumes), from the production in the region of Kujawy and Pomorze as well as from our own experimental field. It has been shown that the average long-term rainfall during the growing season allows for classifying Bydgoszcz region as the area with the lowest rainfall in Poland. Analyzed rainfalls were characterized by a very high variability in time, resulting in climatic risk of plant growing. The largest temporal variability related to August. However, there was no extension of the time variability of rainfall totals in the period 1996-2010, as compared to the period 1981-1995. The sole significant growth trend during the period 1981-2010 was found in May. It appeared a tendency to a decline in summer rainfall totals (VI-VIII) in the annual rainfall total, which is consistent with the IPCC projections. Rainfall totals had highly signi cant impact on yields of selected crops. The highest correlation coefficients were found in relations crop-rainfall in the months of increased water needs of plants. Better correlations rainfall-crop were found using data from the production scale as compared with the scale of experimental field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Polish Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4643
Permanent link to this record