toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lindeskog, M.; Arneth, A.; Bondeau, A.; Waha, K.; Seaquist, J.; Olin, S.; Smith, B. url  doi
openurl 
  Title Implications of accounting for land use in simulations of ecosystem carbon cycling in Africa Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal (up) Earth System Dynamics  
  Volume 4 Issue 2 Pages 385-407  
  Keywords global vegetation model; sub-saharan africa; climate-change; yield gaps; co2; balance; dynamics; atmosphere; cover; variability  
  Abstract Dynamic global vegetation models (DGVMs) are important tools for modelling impacts of global change on ecosystem services. However, most models do not take full account of human land management and land use and land cover changes (LULCCs). We integrated croplands and pasture and their management and natural vegetation recovery and succession following cropland abandonment into the LPJ-GUESS DGVM. The revised model was applied to Africa as a case study to investigate the implications of accounting for land use on net ecosystem carbon balance (NECB) and the skill of the model in describing agricultural production and reproducing trends and patterns in vegetation structure and function. The seasonality of modelled monthly fraction of absorbed photosynthetically active radiation (FPAR) was shown to agree well with satellite-inferred normalised difference vegetation index (NDVI). In regions with a large proportion of cropland, the managed land addition improved the FPAR vs. NDVI fit significantly. Modelled 1991-1995 average yields for the seven most important African crops, representing potential optimal yields limited only by climate forcings, were generally higher than reported FAO yields by a factor of 2-6, similar to previous yield gap estimates. Modelled inter-annual yield variations during 1971-2005 generally agreed well with FAO statistics, especially in regions with pronounced climate seasonality. Modelled land-atmosphere carbon fluxes for Africa associated with land use change (0.07 PgC yr(-1) release to the atmosphere for the 1980s) agreed well with previous estimates. Cropland management options (residue removal, grass as cover crop) were shown to be important to the land-atmosphere carbon flux for the 20th century.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4979 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4494  
Permanent link to this record
 

 
Author Dass, P.; Müller, C.; Brovkin, V.; Cramer, W. url  doi
openurl 
  Title Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes Type Journal Article
  Year 2013 Publication Earth System Dynamics Abbreviated Journal (up) Earth System Dynamics  
  Volume 4 Issue 2 Pages 409-424  
  Keywords land-use change; global vegetation model; soil carbon; climate-change; surface albedo; cover changes; snow cover; remind-r; forest; productivity  
  Abstract Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-4987 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4486  
Permanent link to this record
 

 
Author Leclère, D.; Jayet, P.-A.; de Noblet-Ducoudré, N. url  doi
openurl 
  Title Farm-level Autonomous Adaptation of European Agricultural Supply to Climate Change Type Journal Article
  Year 2013 Publication Ecological Economics Abbreviated Journal (up) Ecol. Econ.  
  Volume 87 Issue Pages 1-14  
  Keywords climate change; agriculture; europe; residual impact; autonomous adaptation; water use efficiency; modeling; land-use; integrated assessment; future scenarios; change impacts; model; vulnerability; performance; emissions; nitrogen; lessons  
  Abstract The impact of climate change on European agriculture is subject to a significant uncertainty, which reflects the intertwined nature of agriculture. This issue involves a large number of processes, ranging from field to global scales, which have not been fully integrated yet. In this study, we intend to help bridging this gap by quantifying the effect of farm-scale autonomous adaptations in response to changes in climate. To do so, we use a modelling framework coupling the STICS generic crop model to the AROPAj microeconomic model of European agricultural supply. This study provides a first estimate of the role of such adaptations, consistent at the European scale while detailed across European regions. Farm-scale autonomous adaptations significantly alter the impact of climate change over Europe, by widely alleviating negative impacts on crop yields and gross margins. They significantly increase European production levels. However, they also have an important and heterogeneous impact on irrigation water withdrawals, which exacerbate the differences in ambient atmospheric carbon dioxide concentrations among climate change scenarios. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4606  
Permanent link to this record
 

 
Author Humblot, P.; Jayet, P.A.; Clerino, P.; Leconte-Demarsy, D.; Szopa, S.; Castell, J.F. doi  openurl
  Title Assessment of ozone impacts on farming systems: a bio-economic modeling approach applied to the widely diverse French case Type Journal Article
  Year 2013 Publication Ecological Economics Abbreviated Journal (up) Ecol. Econ.  
  Volume 85 Issue Pages 50-58  
  Keywords ozone; bio-economic modeling; agricultural production; land use; greenhouse gas; carbon sequestration; abatement costs; climate-change; crops; agriculture; eu; emissions; benefits; level  
  Abstract As a result of anthropogenic activities, ozone is produced in the surface atmosphere, causing direct damage to plants and reducing crop yields. By combining a biophysical crop model with an economic supply model we were able to predict and quantify this effect at a fine spatial resolution. We applied our approach to the very varied French case and showed that ozone has significant productivity and land-use effects. A comparison of moderate and high ozone scenarios for 2030 shows that wheat production may decrease by more than 30% and barley production may increase by more than 14% as surface ozone concentration increases. These variations are due to the direct effect of ozone on yields as well as to modifications in land use caused by a shift toward more ozone-resistant crops: our study predicts a 16% increase in the barley-growing area and an equal decrease in the wheat-growing area. Moreover, mean agricultural gross margin losses can go as high as 2.5% depending on the ozone scenario, and can reach 7% in some particularly affected regions. A rise in ozone concentration was also associated with a reduction of agricultural greenhouse gas emissions of about 2%, as a result of decreased use of nitrogen fertilizers. One noteworthy result was that major impacts, including changes in land use, do not necessarily occur in ozone high concentration zones, and may strongly depend on farm systems and their adaptation capability. Our study suggests that policy makers should view ozone pollution as a major potential threat to agricultural yields. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4604  
Permanent link to this record
 

 
Author Biewald, A.; Rolinski, S.; Lotze-Campen, H.; Schmitz, C.; Dietrich, J.P. url  doi
openurl 
  Title Valuing the impact of trade on local blue water Type Journal Article
  Year 2014 Publication Ecological Economics Abbreviated Journal (up) Ecol. Econ.  
  Volume 101 Issue Pages 43-53  
  Keywords virtual water; blue and green water; water scarcity; agricultural trade; global vegetation model; virtual water; crop trade; resources; scarcity; food; footprints; products; flows; green  
  Abstract International trade of agricultural goods impacts local water scarcity. By quantifying the effect of trade on crop production on grid-cell level and combining it with cell- and crop-specific virtual water contents, we are able to determine green and blue water consumption and savings. Connecting the information on trade-related blue water usage to water shadow prices gives us the possibility to value the impact of international food crop trade on local blue water resources. To determine the trade-related value of the blue water usage, we employ two models: first, an economic land- and water-use model, simulating agricultural trade, production and water-shadow prices and second, a global vegetation and agricultural model, modeling the blue and green virtual water content of the traded crops. Our study found that globally, the international trade of food crops saves blue water worth 2.4 billion US$. This net saving occurs despite the fact that Europe exports virtual blue water in food crops worth 3.1 billion US$. Countries in the Middle East and South Asia profit from trade by importing water intensive crops, countries in Southern Europe on the other hand export water intensive agricultural goods from water scarce sites, deteriorating local water scarcity. (C) 2014 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8009 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4512  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: