toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. doi  openurl
  Title Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
  Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics  
  Volume 27 Issue 4 Pages 463-477  
  Keywords water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil  
  Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4608  
Permanent link to this record
 

 
Author Özkan, Ş.; Hill, J.; Cullen, B. doi  openurl
  Title Effect of climate variability on pasture-based dairy feeding systems in south-east Australia Type Journal Article
  Year 2014 Publication Animal Production Science Abbreviated Journal Animal Production Science  
  Volume 55 Issue 9 Pages 1106-1116  
  Keywords carry-forward surplus; conserved-hay; probability; winter deficit; grown forage consumption; new-zealand; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; crop; systems; cows; management; profit  
  Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in climate affects plant growth, leading to uncertainty in dryland pasture supply. This paper models the impact of climate variability on pasture production and examines the potential of two pasture-based dairy feeding systems: (1) to experience winter deficits; (2) to carry forward the conserved pasture surpluses as silage for future use; and (3) to conserve pasture surpluses as hay. The two dairy feeding systems examined were a traditional perennial ryegrass-based feeding system (ryegrass max. – RM) and a system that incorporated double cropping into the perennial ryegrass pasture base (complementary forage – CF). The conditional probability of the RM and CF systems to generate pasture deficits in winter were 94% and 96%, respectively. Both systems could carry forward the surplus silage into the following lactation almost once in every 4-5 years with the RM system performing slightly better than the CF system. The proportions of the grain-based concentrates fed in the two systems were 25% and 27% for the RM and CF systems, respectively. This study suggests that double-cropping systems have the potential to provide high-quality feed to support the feed gaps when pasture is not available due to increased variability in climatic conditions.  
  Address 2015-09-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1836-5787 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4689  
Permanent link to this record
 

 
Author Molina-Herrera, S.; Haas, E.; Klatt, S.; Kraus, D.; Augustin, J.; Magliulo, V.; Tallec, T.; Ceschia, E.; Ammann, C.; Loubet, B.; Skiba, U.; Jones, S.; Brümmer, C.; Butterbach-Bahl, K.; Kiese, R. doi  openurl
  Title A modeling study on mitigation of N2O emissions and NO3 leaching at different agricultural sites across Europe using LandscapeDNDC Type Journal Article
  Year 2016 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 553 Issue Pages 128-140  
  Keywords Agricultural management; LandscapeDNDC; Mitigation; N₂O emission; NO₃ leaching; Optimization  
  Abstract The identification of site-specific agricultural management practices in order to maximize yield while minimizing environmental nitrogen losses remains in the center of environmental pollution research. Here, we used the biogeochemical model LandscapeDNDC to explore different agricultural practices with regard to their potential to reduce soil N2O emissions and NO3 leaching while maintaining yields. In a first step, the model was tested against observations of N2O emissions, NO3 leaching, soil micrometeorology as well as crop growth for eight European cropland and grassland sites. Across sites, LandscapeDNDC predicts very well mean N2O emissions (r(2)=0.99) and simulates the magnitude and general temporal dynamics of soil inorganic nitrogen pools. For the assessment of site-specific mitigation potentials of environmental nitrogen losses a Monte Carlo optimization technique considering different agricultural management options (i.e., timing of planting, harvest and fertilization, amount of applied fertilizer as well as residue management) was used. The identified optimized field management practices reduce N2O emissions and NO3 leaching from croplands on average by 21% and 31%, respectively. Likewise, average reductions of 55% for N2O emissions and 16% for NO3 leaching are estimated for grasslands. For mitigating environmental loss – while maintaining yield levels – it was most important to reduce fertilizer application rates by in average 10%. Our analyses indicate that yield scaled N2O emissions and NO3 leaching indicate possible improvements of nitrogen use efficiencies in European farming systems. Moreover, the applied optimization approach can be used also in a prognostic way to predict optimal timings and fertilization options (rates and splitting) upon accurate weather forecasts combined with the knowledge of modeled soil nutrient availability and plant nitrogen demand.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4727  
Permanent link to this record
 

 
Author Cortignani, R.; Dono, G. doi  openurl
  Title Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy Type Journal Article
  Year 2018 Publication Environmental Science and Policy Abbreviated Journal Environ. Sci. Pol.  
  Volume 81 Issue Pages 26-35  
  Keywords Agricultural policy; Climate change; Bio-economic model; Integrated Assessment; Temperature-Humidity Index; Adaptation Pathways; Maximum-Entropy; Model; Cap; Uncertainty; Irrigation; Management; Scenarios; Systems  
  Abstract The European Union (EU) has recently reformed its Common Agricultural Policy (CAP) and, in parallel, has completely abolished the production quotas for milk. These changes will have important consequences for the use of land, of inputs (i.e., water and chemicals) and on the economic performance of rural areas. It is of interest to evaluate the integrated impact of these modifications and of climate change (CC), since the latter could neutralize or reverse some desired effects of the former. For this purpose, this paper evaluates the potential impact of the abolition of milk quotas, as well as of the reform of the first pillar of CAP in two different climate scenarios (present and near future). A bio-economic model simulates the possible adaptation of various farm types in an agricultural area of Southern Italy to these changes, given the available technological options and current market conditions. The main results show that the considered policy changes have small positive impacts on economic and environmental factors of the study area. However, some farm types are more affected. CC can effectively attenuate or reverse several of those effects, especially in some farm types. These results can inform the planning of future changes to the CAP, which will have to act in the context of deeper climate alteration.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5193  
Permanent link to this record
 

 
Author Sanz-Cobena, A.; Misselbrook, T.H.; Hernaiz, P.; Vallejo, A. doi  openurl
  Title Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil Type Journal Article
  Year 2019 Publication Atmospheric Environment Abbreviated Journal Atm. Environ.  
  Volume 216 Issue Pages 116913  
  Keywords ammonia; micrometeorological method; slurry incorporation; trade-offs; nitrous oxide; mediterranean agroecosystems; nitrous-oxide emissions; field-applied manure; organic fertilizers; ammonia emissions; methane emissions; N2O emissions; animal manures; management; losses; grassland  
  Abstract Ammonia emission from fertilized cropping systems is an important concern for stakeholders, particularly in regions with high livestock densities producing large amounts of manure. Application of pig slurries can result in very large losses of N through NH3 volatilization, thus decreasing the N use efficiency (NUE) of the applied manure. Shallow incorporation has been shown to significantly abate these losses. In this field study, we assessed the impact of contrasting weather conditions on the effectiveness of shallow injection to abate NH3 emissions from pig slurry application to a Mediterranean soil. As potential trade-offs of NH3 abatement, greenhouse gas emissions were also measured under conditions of high soil moisture. Compared with surface application of slurry, shallow injection effectively and significantly decreased NH3 losses independently of weather conditions, but reductions of NH3 emission were greater after heavy rainfall. In contrast, under these conditions, shallow injection triggered higher emissions of N2O and CH4. Our findings reinforce the idea that any single-pollutant abatement strategy needs to be designed and assessed in a regional context and considering potential trade-offs in the form of other pollutants.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5234  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: