toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hidy, D.; Barcza, Z.; Haszpra, L.; Churkina, G.; Pintér, K.; Nagy, Z. url  doi
openurl 
  Title (up) Development of the Biome-BGC model for simulation of managed herbaceous ecosystems Type Journal Article
  Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 226 Issue Pages 99-119  
  Keywords biogeochemical model; biome-bgc; grassland; management; soil moisture; bayesian calibration; carbon flux model; regional applications; bayesian calibration; use efficiency; general-model; exchange; balance; climate; grassland; variability  
  Abstract Apart from measurements, numerical models are the most convenient instruments to analyze the carbon and water balance of terrestrial ecosystems and their interactions with changing environmental conditions. The process-based Biome-BGC model is widely used to simulate the storage and flux of water, carbon, and nitrogen within the vegetation, litter, and soil of unmanaged terrestrial ecosystems. Considering herbaceous vegetation related simulations with Biome-BGC, soil moisture and growing season control on ecosystem functioning is inaccurate due to the simple soil hydrology and plant phenology representation within the model. Consequently, Biome-BGC has limited applicability in herbaceous ecosystems because (1) they are usually managed; (2) they are sensitive to soil processes, most of all hydrology; and (3) their carbon balance is closely connected with the growing season length. Our aim was to improve the applicability of Biome-BGC for managed herbaceous ecosystems by implementing several new modules, including management. A new index (heatsum growing season index) was defined to accurately estimate the first and the final days of the growing season. Instead of a simple bucket soil sub-model, a multilayer soil sub-model was implemented, which can handle the processes of runoff, diffusion and percolation. A new module was implemented to simulate the ecophysiological effect of drought stress on plant mortality. Mowing and grazing modules were integrated in order to quantify the functioning of managed ecosystems. After modifications, the Biome-BGC model was calibrated and validated using eddy covariance-based measurement data collected in Hungarian managed grassland ecosystems. Model calibration was performed based on the Bayes theorem. As a result of these developments and calibration, the performance of the model was substantially improved. Comparison with measurement-based estimate showed that the start and the end of the growing season are now predicted with an average accuracy of 5 and 4 days instead of 46 and 85 days as in the original model. Regarding the different sites and modeled fluxes (gross primary production, total ecosystem respiration, evapotranspiration), relative errors were between 18-60% using the original model and 10-18% using the developed model; squares of the correlation coefficients were between 0.02-0.49 using the original model and 0.50-0.81 using the developed model. (c) 2011 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4472  
Permanent link to this record
 

 
Author Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T. url  doi
openurl 
  Title (up) Dynamic economic modelling of crop rotations with farm management practices under future pest pressure Type Journal Article
  Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 144 Issue Pages 65-76  
  Keywords Farm management; Dynamic optimization; Crop rotation; Risk aversion; Climate change; Prices; climate-change; sequester carbon; changing climate; food security; challenge; Finland; ensembles; systems; europe; tool  
  Abstract Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4719  
Permanent link to this record
 

 
Author Özkan, Ş.; Hill, J.; Cullen, B. doi  openurl
  Title (up) Effect of climate variability on pasture-based dairy feeding systems in south-east Australia Type Journal Article
  Year 2014 Publication Animal Production Science Abbreviated Journal Animal Production Science  
  Volume 55 Issue 9 Pages 1106-1116  
  Keywords carry-forward surplus; conserved-hay; probability; winter deficit; grown forage consumption; new-zealand; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; crop; systems; cows; management; profit  
  Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in climate affects plant growth, leading to uncertainty in dryland pasture supply. This paper models the impact of climate variability on pasture production and examines the potential of two pasture-based dairy feeding systems: (1) to experience winter deficits; (2) to carry forward the conserved pasture surpluses as silage for future use; and (3) to conserve pasture surpluses as hay. The two dairy feeding systems examined were a traditional perennial ryegrass-based feeding system (ryegrass max. – RM) and a system that incorporated double cropping into the perennial ryegrass pasture base (complementary forage – CF). The conditional probability of the RM and CF systems to generate pasture deficits in winter were 94% and 96%, respectively. Both systems could carry forward the surplus silage into the following lactation almost once in every 4-5 years with the RM system performing slightly better than the CF system. The proportions of the grain-based concentrates fed in the two systems were 25% and 27% for the RM and CF systems, respectively. This study suggests that double-cropping systems have the potential to provide high-quality feed to support the feed gaps when pasture is not available due to increased variability in climatic conditions.  
  Address 2015-09-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1836-5787 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4689  
Permanent link to this record
 

 
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. doi  openurl
  Title (up) Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
  Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics  
  Volume 27 Issue 4 Pages 463-477  
  Keywords water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil  
  Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4608  
Permanent link to this record
 

 
Author Legarrea, S.; Velázquez, E.; Aguado, P.; Fereres, A.; Morales, I.; Rodríguez, D.; Del Estal, P.; Viñuela, E. url  doi
openurl 
  Title (up) Effects of a photoselective greenhouse cover on the performance and host finding ability of Aphidius ervi in a lettuce crop Type Journal Article
  Year 2014 Publication BioControl Abbreviated Journal BioControl  
  Volume 59 Issue 3 Pages 265-278  
  Keywords aphidius ervi; macrosiphum euphorbiae; uv-absorbing net; parasitoid; sadie; spatial distribution; integrated pest-management; natural enemies; plastic films; mosaic-virus; insect pests; count data; pea aphid; uv; parasitoids; hymenoptera  
  Abstract In the search for a durable pest control management, biological control agents and photoselective covers are suitable candidates to be implemented in greenhouse crops. In this work, we studied the effects of a 50 mesh photoselective cover compared to a standard with similar characteristics but without UV-absorbing additives on the performance of Aphidius ervi Haliday (Hymenoptera: Braconidae), a widely used parasitoid to control aphids in vegetable crops. Four field experiments were conducted in La Poveda Experimental Farm (Central Spain) where a lettuce crop was grown during the years 2008-2010. Lettuce plants were infested by Macrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae) and the parasitoid A. ervi was released and monitored throughout the crop cycle to evaluate any constraint in its performance produced by UV-absorbing nets. The ability of A. ervi to find and parasitize the host was not modified by the photoselective cover during the four seasons studied. Thus, we suggest that both strategies could be combined in the context of IPM in vegetable crops where this natural enemy is released.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1386-6141, 1573-8248 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4509  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: