toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eyshi Rezaei, E.; Webber, H.; Gaiser, T.; Naab, J.; Ewert, F. url  doi
openurl 
  Title (down) Heat stress in cereals: Mechanisms and modelling Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 64 Issue Pages 98-113  
  Keywords high temperature; heat stress; cereal yield; climate change impact; crop modelling; high-temperature stress; tropical maize hybrids; triticum-aestivum l; high-yielding rice; induced spikelet sterility; stem reserve mobilization; climate-change impacts; oryza-sativa l.; grain-yield; kernel set  
  Abstract Increased climate variability and higher mean temperatures are expected across many world regions, both of which will contribute to more frequent extreme high temperatures events. Empirical evidence increasingly shows that short episodes of high temperature experienced around flowering can have large negative impacts on cereal grain yields, a phenomenon increasingly referred to as heat stress. Crop models are currently the best tools available to investigate how crops will grow under future climatic conditions, though the need to include heat stress effects has been recognized only relatively recently. We reviewed literature on both how key crop physiological processes and the observed yields under production conditions are impacted by high temperatures occurring particularly in the flowering and grain filling phases for wheat, maize and rice. This state of the art in crop response to heat stress was then contrasted with generic approaches to simulate the impacts of high temperatures in crop growth models. We found that the observed impacts of heat stress on crop yield are the end result of the integration of many processes, not all of which will be affected by a “high temperature” regime. This complexity confirms an important role for crop models in systematizing the effects of high temperatures on many processes under a range of environments and realizations of crop phenology. Four generic approaches to simulate high temperature impacts on yield were identified: (1) empirical reduction of final yield, (2) empirical reduction in daily increment in harvest index, (3) empirical reduction in grain number, and (4) semi-deterministic models of sink and source limitation. Consideration of canopy temperature is suggested as a promising approach to concurrently account for heat and drought stress, which are likely to occur simultaneously. Improving crop models’ response to high temperature impacts on cereal yields will require experimental data representative of field production and should be designed to connect what is already known about physiological responses and observed yield impacts. (C) 2014 Elsevier B.V. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4741  
Permanent link to this record
 

 
Author Conradt, T.; Gornott, C.; Wechsung, F. url  doi
openurl 
  Title (down) Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 216 Issue Pages 68-81  
  Keywords cluster analysis; crop yield estimation; germany; multivariate regression; silage maize; winter wheat; climate-change; canadian prairies; crop yield; temperature; responses; environments; variability; cultivar; china  
  Abstract Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4709  
Permanent link to this record
 

 
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G. doi  openurl
  Title (down) Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 252 Issue Pages 107791  
  Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity  
  Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 5230  
Permanent link to this record
 

 
Author Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A. doi  openurl
  Title (down) Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Type Journal Article
  Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 466-467 Issue Pages 164-174  
  Keywords Agriculture/*methods; Air Pollutants/*metabolism; Brassica napus/growth & development/metabolism; Crops, Agricultural/growth & development/*metabolism; Gases/metabolism; Greenhouse Effect; Hordeum/growth & development/metabolism; Manure/*analysis; Nitrogen/metabolism; Nitrogen Dioxide/metabolism; Spain; Vicia/growth & development/metabolism; Zea mays/growth & development; Cover crops; GHG emissions; Green manure; Irrigation; Maize  
  Abstract This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N(2)O, CO(2) and CH(4) in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N(2)O and CO(2) losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N(2)O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N(2)O compared with -Ba and -Rp. The direct emissions of N(2)O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO(3)(-) pool due to highly denitrifying conditions and increased drainage. The fluxes of CO(2) were in the range of other fertilized crops (i.e., 1118.71-1736.52 kg CO(2)-Cha(-1)). The incorporation of CC residues enhanced soil respiration in the range of 21-28% for barley and rape although no significant differences between treatments were detected. Negative CH(4) fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of -0.12 and -0.10 kg CH(4)-Cha(-1) for plots with and without incorporated CCs, respectively).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4639  
Permanent link to this record
 

 
Author Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. openurl 
  Title (down) Designing a high-yielding maize ideotype for a changing climate in Lombardy plain northern Italy Type Journal Article
  Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 499 Issue Pages 497-509  
  Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation  
  Abstract • ARMOSA model simulated a maize ideotype with drought adaptation under climate change. • The ideotype needs less water for higher yield compared to current hybrids. • Higher production involves more crop residues that enhance soil C sequestration. • Soil organic C may generally decrease and N leaching will increase in sandy soil. The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030–2060 and 2070–2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha− 1), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245–565 mm y− 1). With respect to the current hybrid, the ideotype will require less irrigation water (− 13%, p < 0.01) and it resulted in significantly higher yield under water stress condition (+ 15%, p < 0.01) and optimal water supply (+ 2%, p < 0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha− 1 will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4633  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: