toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P. url  doi
openurl 
  Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 117 Issue Pages 1-12  
  Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture  
  Abstract (up) Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4489  
Permanent link to this record
 

 
Author Lizaso, J.I.; Ruiz-Ramos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Rodriguez, A.; Maddonni, G.A.; Otegui, M.E. doi  openurl
  Title Modeling the response of maize phenology, kernel set, and yield components to heat stress and heat shock with CSM-IXIM Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 214 Issue Pages 239-252  
  Keywords Heat stress, Maize; CSM-IXIM; CSM-CERES-maize; Beta function; CERES-MAIZE; DEVELOPMENTAL PROCESSES; TEMPERATURE RESPONSES; CROSS-VALIDATION; GRAIN-SORGHUM; GROWTH; SIMULATION; PLANTS; SENESCENCE; NITROGEN  
  Abstract (up) The available evidence suggests that the current increasing trend in global surface temperatures will continue during this century, which will be accompanied by a greater frequency of extreme events. The IPCC has projected that higher temperatures may outscore the known optimal and maximum temperatures for maize. The purpose of this study was to improve the ability of the maize model CSM-IXIM to simulate crop development, growth, and yield under hot conditions, especially with regards to the impact of above-optimal temperatures around anthesis. Field and greenhouse experiments that were performed over three years (2014-2016) using the same short-season hybrid, PR37N01 (FAO 300), provided the data for this work. Maize was sown at a target population density of 5 plants M-2 on two sowing dates in 2014 and 2015 and on one in 2016 at three locations in Spain (northern, central, and southern Spain) with a well-defined thermal gradient. The same hybrid was also sown in two greenhouse chambers with daytime target temperatures of approximately 25 and above 35 degrees C. During the nighttime, the temperature in both chambers was allowed to equilibrate with the outside temperature. The greenhouse treatments consisted of moving 18 plants at selected phenological stages (V4, V9, anthesis, lag phase, early grain filling) from the cool chamber to the hot chamber over a week and then returning the plants back to the cool chamber. An additional control treatment remained in the cool chamber all season, and in 2015 and 2016, one treatment remained permanently in the hot chamber. Two maize models in the Decision Support System for Agrotechnology Transfer (DSSAT) V4.6 were compared, namely CERES and IXIM. The HUM version included additional components that were previously developed to improve the crop N simulation and to incorporate the anthesis-silking interval (ASI). A new thermal time calculation, a heat stress index, the impact of pollen-sterilizing temperatures, and the explicit simulation of male and female flowering as affected by the daily heat conditions were added to IXIM. The phenology simulation in field experiments by IXIM improved substantially. The RMSE for silking and maturity in CERES were 7.9 and 13.7 days, decreasing in DCIM to 2.8 and 7.3 days, respectively. Similarly, the estimated kernel numbers, kernel weight, grain yield and final biomass were always closer to the measurements in HUM than in CERES. The worst simulations were for kernel weight, and for that reason, the differences in grain yield between the models were small (the RMSE in CERES was 1219 kg ha(-1) vs. 1082 kg ha(-1) in IXIM). The greenhouse results also supported the improved estimations of crop development by IXIM (RMSE of 2.6 days) relative to CERES (7.4 days). The impact of the heat treatments on grain yield was consistently overestimated by CERES, while HUM captured the general trend. The new HUM model improved the CERES simulations when elevated temperatures were included in the evaluation data. Additional model testing with measurements from a wider latitudinal range and relevant heat conditions are required.  
  Address 2017-11-24  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5180  
Permanent link to this record
 

 
Author Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I. url  doi
openurl 
  Title Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 207 Issue Pages 94-106  
  Keywords Climate suitability; Indicator-based method of evaluation; Ecoclimatic; indicator; Crop phenology; Crop ecophysiology; Crop management; Yield; quality; high-temperature; heat-stress; change scenarios; maize; wheat; growth; yield; agriculture; systems; time  
  Abstract (up) The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4553  
Permanent link to this record
 

 
Author Shrestha, S.; Abdalla, M.; Hennessy, T.; Forristal, D.; Jones, M.B. url  doi
openurl 
  Title Irish farms under climate change – is there a regional variation on farm responses? Type Journal Article
  Year 2015 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 153 Issue 03 Pages 385-398  
  Keywords change impacts; elevated co2; potential impacts; maize production; united-states; winter-wheat; plant-growth; adaptation; ireland; yield  
  Abstract (up) The current paper aims to determine regional impacts of climate change on Irish farms examining the variation in farm responses. A set of crop growth models were used to determine crop and grass yields under a baseline scenario and a future climate scenario. These crop and grass yields were used along with farm-level data taken from the Irish National Farm Survey in an optimizing farm-level (farm-level linear programming) model, which maximizes farm profits under limiting resources. A change in farm net margins under the climate change scenario compared to the baseline scenario was taken as a measure to determine the effect of climate change on farms. The growth models suggested a decrease in cereal crop yields (up to 9%) but substantial increase in yields of forage maize (up to 97%) and grass (up to 56%) in all regions. Farms in the border, midlands and south-east regions suffered, whereas farms in all other regions generally fared better under the climate change scenario used in the current study. The results suggest that there is a regional variability between farms in their responses to the climate change scenario. Although substituting concentrate feed with grass feeds is the main adaptation on all livestock farms, the extent of such substitution differs between farms in different regions. For example, large dairy farms in the south-east region adopted total substitution of concentrate feed while similar dairy farms in the south-west region opted to replace only 0.30 of concentrate feed. Farms in most of the regions benefitted from increasing stocking rate, except for sheep farms in the border and dairy farms in the south-east regions. The tillage farms in the mid-east region responded to the climate change scenario by shifting arable production to beef production on farms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 1469-5146 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4542  
Permanent link to this record
 

 
Author De Sanctis, G.; Roggero, P.P.; Seddaiu, G.; Orsini, R.; Porter, C.H.; Jones, J.W. url  doi
openurl 
  Title Long-term no tillage increased soil organic carbon content of rain-fed cereal systems in a Mediterranean area Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 40 Issue Pages 18-27  
  Keywords N fertilization; C dynamics; DSSAT; Wheat; Maize; Weed fallow; sandy loam soil; cropping systems; agricultural systems; climate-change; winter-wheat; sequestration; matter; model; fertilization; dynamics  
  Abstract (up) The differential impact on soil organic carbon (SOC) of applying no tillage (NT) compared to conventional tillage (CT, i.e. mouldboard ploughing), along with three rates of nitrogen (N) fertilizer application (0,90 and 180 kg ha(-1) y(-1)), was studied under rain-fed Mediterranean conditions in a long-term experiment based on a durum wheat-maize rotation, in which crop residues were left on the soil (NT) or incorporated (CT). Observed SOC content following 8 and 12 years of continuous treatment application was significantly higher in the top 10 cm of the soil under NT than CT, but it was similar in the 10-40 cm layer. NT grain yields for both maize and durum wheat were below those attained under CT (on average 32% and 14% lower respectively) at a given rate of N fertilizer application. Soil, climate and crop data over 5 years were used to calibrate DSSAT model in order to simulate the impact of the different management practices over a 50-year period. Good agreement was obtained between observed and simulated values for crops grain yield, above-ground biomass and observed SOC values. Results from the simulations showed that under NT the weeds growing during the intercrop fallow period made a significant contribution to the observed SOC increase. When the contribution of the weed fallow was considered, NT significantly increased SOC in the top 40 cm of the soil at an average rate of 0.43, 0.31 and 0.03 t ha(-1) per year, respectively for 180,90 and 0 kg N ha(-1) year(-1), within the simulated 50 years. Under CT, a significant SOC increase was simulated under N180 and a significant decrease when no fertilizer was supplied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4469  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: