toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P.; Young, D. url  doi
openurl 
  Title Regrowth simulation of the perennial grass timothy Type Journal Article
  Year 2012 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume (down) 232 Issue Pages 64-77  
  Keywords biomass; carbohydrate; leaf area index; n uptake; reserve-dependent growth; temperature; nutritive-value; carbohydrate reserves; phleum-pratense; catimo model; leaf-area; nitrogen-fertilization; spring harvest; meadow fescue; tall fescue; growth  
  Abstract Several process-based models for simulating the growth of perennial grasses have been developed but few include the simulation of regrowth. The model CATIMO simulates the primary growth of timothy (Phleum pratense L), an important perennial forage grass species in northern regions of Europe and North America. Our objective was to further develop the model CATIMO to simulate timothy regrowth using the concept of reserve-dependent growth. The performance of this modified CATIMO model in simulating leaf area index (LAI), biomass dry matter (DM) yield, and N uptake of regrowth was assessed with data from four independent field experiments in Norway, Finland, and western and eastern Canada using an approach that combines graphical comparison and statistical analysis. Biomass DM yield and N uptake of regrowth were predicted at the same accuracy as primary growth with linear regression coefficients of determination between measured and simulated values greater than 0.79, model simulation efficiencies greater than 0.78, and normalized root mean square errors (14-30% for biomass and 24-34% for N uptake) comparable with the coefficients of variation of measured data (1-21% for biomass and 1-25% for N uptake). The model satisfactorily simulated the regrowth LAI but only up to a value of about 4.0. The modified CATIMO model with its capacity to simulate regrowth provides a framework to simulate perennial grasses with multiple harvests, and to explore management options for sustainable grass production under different environmental conditions. Crown Copyright (C) 2012 Published by Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4473  
Permanent link to this record
 

 
Author Lizaso, J.I.; Ruiz-Rarnos, M.; Rodriguez, L.; Gabaldon-Leal, C.; Oliveira, J.A.; Lorite, I.J.; Sanchez, D.; Garcia, E.; Rodriguez, A. doi  openurl
  Title Impact of high temperatures in maize: Phenology and yield components Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume (down) 216 Issue Pages 129-140  
  Keywords Heat stress; Maize; Kernel number; Anthesis, Beta function; Vapor-Pressure Deficit; Heat-Stress; Transpiration Response; Pollen; Viability; Leaf Appearance; Climate-Change; Kernel Number; Grain-Yield; Growth; Plants  
  Abstract Heat stress is a main threat to current and future global maize production. Adaptation of maize to future warmer conditions requires improving our understanding of crop responses to elevated temperatures. For this purpose, the same short-season (FAO 300) maize hybrid PR37N01 was grown over three years of field experiments on three contrasting Spanish locations in terms of temperature regime. The information complemented three years of greenhouse experiments with the same hybrid, applying heat treatments at various critical moments of the crop cycle. Crop phenology, growth, grain yield, and yield components were monitored. An optimized beta function improved the calculation of thermal time compared to the linear-cutoff estimator with base and optimum temperatures of 8 and 34 degrees C, respectively. Our results showed that warmer temperatures accelerate development rate resulting in shorter vegetative and reproductive phases (ca. 30 days for the whole cycle). Heat stress did not cause silking delay in relation to anthesis (extended anthesis-silking interval), at least in the range of temperatures (maximum temperature up to 42.9 degrees C in the field and up to 52.5 degrees C in the greenhouse) considered in this study. Our results indicated that maize grain yield is reduced under heat stress mainly via pollen viability that in turn determines kernel number, although a smaller but significant effect of the female component has been also detected.  
  Address 2018-02-19  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5190  
Permanent link to this record
 

 
Author Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume (down) 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
 

 
Author De Pascale, S.; Maggio, A.; Orsini, F.; Stanghellini, C.; Heuvelink, E. url  doi
openurl 
  Title Growth response and radiation use efficiency in tomato exposed to short-term and long-term salinized soils Type Journal Article
  Year 2015 Publication Scientia Horticulturae Abbreviated Journal Scientia Horticulturae  
  Volume (down) 189 Issue Pages 139-149  
  Keywords Leaf osmotic adjustment; Stomatal resistance; Leaf water potential; Light; Salt stress; RUE; physiological-response; salt tolerance; drought stress; water-use; yield; nitrogen; interception; productivity; leaf; photosynthesis  
  Abstract Farmlands are increasingly exposed to degradation phenomena associated to climate change and agricultural practices, including irrigation. It is estimated that about 20% of the world’s irrigated land is salt affected. In this paper we aimed at evaluating the effect of seasonal and multiannual soil satinization on growth, yield, and radiation use efficiency of tomato in open field. Two field experiments were carried out at the Experimental Station of the University of Naples Federico II (latitude 40 degrees 31’N longitude 14 degrees 58’E) (Italy) on tomato during 2004 and 2005 to study the effect of five levels of water salinity: NSC (EC = 0.5 dS m(-1)), SW1 (EC= 2.3 dS m(-1)), SW2 (EC= 4.4 dS m(-1)), SW3 (EC= 8.5 dS m(-1)) and SW4 (EC= 15.7 dS m(-1)) in a soil exposed to one-season salinization (ST = short-term) and an adjacent soil exposed to >20 years salinization (LT = long-term). Plant growth, yield and fruit quality (pH, EC, total soluble solids and the concentration of reducing sugars and of titratable acids), and plant water relations were measured and radiation use efficiency (RUE) was calculated. Increasing water salinity negatively affected the leaf area index (LAI), radiation use efficiency (RUE) and above-ground dry weight (DW) accumulation resulting in lower total and marketable yield. Maximum total and marketable yield obtained with the NSC treatment were respectively 117.9 and 111.0 Mg ha(-1) in 2004 and 113.1 and 107.9 Mg ha(-1) in 2005. Although the smaller leaf area of salinized plants was largely responsible for reduced RUE, we found approximately 50% of this reduction to be accounted for by processes other than changed crop architecture. These may include an increased stomatal resistance, increased mesophyll resistance and other impaired metabolic functions that may occur at high salinity. Remarkably, we found that LT salinized plants had a slightly better efficiency of use of intercepted radiation (RUEIR) at a given EC of soil extract than ST salinized plants indicating that LT salinization, and consequent permanent modifications of the soil physical properties, may trigger additional physiological mechanisms of adaptation compared to ST salinized plants. These differences are relevant in light of the evolution of salinized areas, also in response to climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-4238 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4557  
Permanent link to this record
 

 
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P. url  doi
openurl 
  Title Simulating the Nutritive Value of Timothy Summer Regrowth Type Journal Article
  Year 2013 Publication Agronomy Journal Abbreviated Journal Agronomy Journal  
  Volume (down) 105 Issue 3 Pages 563  
  Keywords varying n nutrition; cation-anion difference; spring growth; swine manure; leaf-area; nitrogen; yield; model; digestibility; dynamics  
  Abstract The process-based grass model, CATIMO, simulates the spring growth and nutritive value of timothy (Phleum pratense L.), a forage species widely grown in Scandinavia and Canada, but the nutritive value of the summer regrowth has never been simulated. Our objective was to improve CATIMO for simulating the N concentration, neutral detergent fiber (NDF), in vitro digestibility of NDF (dNDF), and in vitro true digestibility of dry matter (IVTD) of summer regrowth. Daily changes in summer regrowth nutritive value were simulated by modifying key crop parameters that differed from spring growth. More specifically, the partitioning fraction to leaf blades was increased to increase the leaf-to-weight ratio, and daily changes in NDF and dNDF of leaf blades and stems were reduced. The modified CATIMO model was evaluated with data from four independent experiments in eastern and western Canada and Finland. The model performed better for eastern Canada than for the other locations, but the nutritive value attributes of the summer regrowth across locations (range of normalized RMSE = 8-25%, slope < 0.17, R-2 < 0.10) were not simulated as well as those of the spring growth (range of normalized RMSE = 4-16%, 0.85 < slope < 1.07, R-2 > 0.61). These modeling results highlight knowledge gaps in timothy summer regrowth and prospective research directions: improved knowledge of factors controlling the nutritive value of the timothy summer regrowth and experimental measurements of leaf-to-weight ratio and of the nutritive value of leaves and stems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1962 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4493  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: