|   | 
Details
   web
Records
Author Mitter, H.; Techen, A.-K.; Sinabell, F.; Helming, K.; Kok, K.; Priess, J.A.; Schmid, E.; Bodirsky, B.L.; Holman, I.; Lehtonen, H.; Leip, A.; Le Mouel, C.; Mathijs, E.; Mehdi, B.; Michetti, M.; Mittenzwei, K.; Mora, O.; Oygarden, L.; Reidsma, P.; Schaldach, R.; Schoenhart, M.
Title A protocol to develop Shared Socio-economic Pathways for European agriculture Type Journal Article
Year 2019 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.
Volume 252 Issue Pages (down) Unsp 109701
Keywords EUR-Agri-SSP; Consistent storylines; Narrative; Integrated assessment; Social environmental system; Climate change; land-use change; global environmental-change; climate-change; scenario; development; transdisciplinary research; sustainability science; integrated-assessment; future; adaptation; framework
Abstract Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture – Eur-Agri-SSPs- to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports intercomparisons of IAAS.
Address 2020-02-14
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5222
Permanent link to this record
 

 
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C.
Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 6 Pages (down) 064029
Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios
Abstract The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4627
Permanent link to this record
 

 
Author Schmitz, C.; Kreidenweis, U.; Lotze-Campen, H.; Popp, A.; Krause, M.; Dietrich, J.P.; Müller, C.
Title Agricultural trade and tropical deforestation: interactions and related policy options Type Journal Article
Year 2014 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change
Volume 15 Issue 8 Pages (down) 1757-1772
Keywords Land-use change; Trade liberalisation; Tropical deforestation; Forest; protection; Agricultural productivity growth; land-use; brazilian amazon; co2 concentrations; carbon emissions; conservation; climate; mitigation; forests; impact; growth; Environmental Sciences & Ecology
Abstract The extensive clearing of tropical forests throughout past decades has been partly assigned to increased trade in agricultural goods. Since further trade liberalisation can be expected, remaining rainforests are likely to face additional threats with negative implications for climate mitigation and the local environment. We apply a spatially explicit economic land-use model coupled to a biophysical vegetation model to examine linkages and associated policies between trade and tropical deforestation in the future. Results indicate that further trade liberalisation leads to an expansion of deforestation in Amazonia due to comparative advantages of agriculture in South America. Globally, between 30 and 60 million ha (5-10 %) of tropical rainforests would be cleared additionally, leading to 20-40 Gt additional emissions by 2050. By applying different forest protection policies, those values could be reduced substantially. Most effective would be the inclusion of avoided deforestation into a global emissions trading scheme. Carbon prices corresponding to the concentration target of 550 ppm would prevent deforestation after 2020. Investing in agricultural productivity reduces pressure on tropical forests without the necessity of direct protection. In general, additional trade-induced demand from developed and emerging countries should be compensated by international efforts to protect natural resources in tropical regions.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 1436-378x ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4810
Permanent link to this record
 

 
Author Klein, D.; Luderer, G.; Kriegler, E.; Strefler, J.; Bauer, N.; Leimbach, M.; Popp, A.; Dietrich, J.P.; Humpenöder, F.; Lotze-Campen, H.; Edenhofer, O.
Title The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE Type Journal Article
Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change
Volume 123 Issue 3-4 Pages (down) 705-718
Keywords land-use change; bio-energy; greenhouse gases; carbon-dioxide; climate-change; constraints; emissions; economics; storage; costs
Abstract This study investigates the use of bioenergy for achieving stringent climate stabilization targets and it analyzes the economic drivers behind the choice of bioenergy technologies. We apply the integrated assessment framework REMIND-MAgPIE to show that bioenergy, particularly if combined with carbon capture and storage (CCS) is a crucial mitigation option with high deployment levels and high technology value. If CCS is available, bioenergy is exclusively used with CCS. We find that the ability of bioenergy to provide negative emissions gives rise to a strong nexus between biomass prices and carbon prices. Ambitious climate policy could result in bioenergy prices of 70 $/GJ (or even 430 $/GJ if bioenergy potential is limited to 100 EJ/year), which indicates a strong demand for bioenergy. For low stabilization scenarios with BECCS availability, we find that the carbon value of biomass tends to exceed its pure energy value. Therefore, the driving factor behind investments into bioenergy conversion capacities for electricity and hydrogen production are the revenues generated from negative emissions, rather than from energy production. However, in REMIND modern bioenergy is predominantly used to produce low-carbon fuels, since the transport sector has significantly fewer low-carbon alternatives to biofuels than the power sector. Since negative emissions increase the amount of permissible emissions from fossil fuels, given a climate target, bioenergy acts as a complement to fossils rather than a substitute. This makes the short-term and long-term deployment of fossil fuels dependent on the long-term availability of BECCS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0009 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4529
Permanent link to this record
 

 
Author Dass, P.; Müller, C.; Brovkin, V.; Cramer, W.
Title Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes Type Journal Article
Year 2013 Publication Earth System Dynamics Abbreviated Journal Earth System Dynamics
Volume 4 Issue 2 Pages (down) 409-424
Keywords land-use change; global vegetation model; soil carbon; climate-change; surface albedo; cover changes; snow cover; remind-r; forest; productivity
Abstract Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 degrees C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 +/- 5.6 EJ yr(-1) of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 degrees C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth’s carbon and energy budget.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4987 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4486
Permanent link to this record