toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kros, J.; Bakker, M.M.; Reidsma, P.; Kanellopoulos, A.; Jamal Alam, S.; de Vries, W. url  doi
openurl 
  Title Impacts of agricultural changes in response to climate and socioeconomic change on nitrogen deposition in nature reserves Type Journal Article
  Year 2015 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.  
  Volume 30 Issue 5 Pages 871-885  
  Keywords Agricultural adaptation; Climate change; Land use change; Environmental; impact; Farming system; Nitrogen losses; netherlands; diversity; scenario  
  Abstract This paper describes the environmental consequences of agricultural adaptation on eutrophication of the nearby ecological network for a study area in the Netherlands. More specifically, we explored (i) likely responses of farmers to changes in climate, technology, policy, and markets; (ii) subsequent changes in nitrogen (N) emissions in responses to farmer adaptations; and (iii) to what extent the emitted N was deposited in nearby nature reserves, in view of the potential impacts on plant species diversity and desired nature targets. For this purpose, a spatially-explicit study at landscape level was performed by integrating the environmental model INITIATOR, the farm model FSSIM, and the land-use model RULEX. We evaluated two alternative scenarios of change in climate, technology, policy, and markets for 2050: one in line with a ‘global economy’ (GE) storyline and the other in line with a ‘regional communities’ (RC) storyline. Results show that the GE storyline resulted in a relatively strong increase in agricultural production compared to the RC storyline. Despite the projected conversions of agricultural land to nature (as part of the implementation of the National Ecological Network), we project an increase in N losses and N deposition due to N emissions in the study area of about 20 %. Even in the RC storyline, with a relatively modest increase in agricultural production and a larger expansion of the nature reserve, the N losses and deposition remain at the current level, whereas a reduction is required. We conclude that more ambitious green policies are needed in view of nature protection.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 1572-9761 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4565  
Permanent link to this record
 

 
Author Gutzler, C.; Helming, K.; Balla, D.; Dannowski, R.; Deumlich, D.; Glemnitz, M.; Knierim, A.; Mirschel, W.; Nendel, C.; Paul, C.; Sieber, S.; Stachow, U.; Starick, A.; Wieland, R.; Wurbs, A.; Zander, P. url  doi
openurl 
  Title Agricultural land use changes – a scenario-based sustainability impact assessment for Brandenburg, Germany Type Journal Article
  Year 2015 Publication Ecological Indicators Abbreviated Journal Ecological Indicators  
  Volume 48 Issue Pages 505-517  
  Keywords scenarios; impact assessment; agricultural intensification; land use change; irrigation; bioenergy; social and environmental indicators; climate-change; landscape; model  
  Abstract Decisions for agricultural management are taken at farm scale. However, such decisions may well impact upon regional sustainability. Two of the likely agricultural management responses to future challenges are extended use of irrigation and increased production of energy crops. The drivers for these are high commodity prices and subsidy policies for renewable energy. However, the impacts of these responses upon regional sustainability are unknown. Thus, we conducted integrated impact assessments for agricultural intensification scenarios in the federal state of Brandenburg, Germany, for 2025. One Irrigation scenario and one Energy scenario were contrasted with the Business As Usual (BAU) scenario. We applied nine indicators to analyze the economic, social and environmental effects at the regional, in this case district scale, which is the smallest administrative unit in Brandenburg. Assessment results were discussed in a stakeholder workshop involving 16 experts from the state government. The simulated area shares of silage maize for fodder and energy were 29%, 37% and 49% for the BAU, Irrigation, and Energy scenarios, respectively. The Energy scenario increased bio-electricity production to 41% of the demand of Brandenburg, and it resulted in CO2 savings of up to 3.5 million tons. However, it resulted in loss of biodiversity, loss of landscape scenery, increased soil erosion risk, and increased area demand for water protection requirements. The Irrigation scenario led to yield increases of 7% (rapeseed), 18% (wheat, sugar beet), and 40% (maize) compared to the BAU scenario. It also reduced the year-to-year yield variability. Water demand for irrigation was found to be in conflict with other water uses for two of the 14 districts. Spatial differentiation of scenario impacts showed that districts with medium to low yield potentials were more affected by negative impacts than districts with high yield potentials. In this first comprehensive sustainability impact assessment of agricultural intensification scenarios at regional level, we showed that a considerable potential for agricultural intensification exists. The intensification is accompanied by adverse environmental and socio-economic impacts. The novelty lies in the multiscale integration of comprehensive, agricultural management simulations with regional level impact assessment, which was achieved with the adequate use of indicators. It provided relevant evidence for policy decision making. Stakeholders appreciated the integrative approach of the assessment, which substantiated ongoing discussions among the government bodies. The assessment approach and the Brandenburg case study may stay exemplary for other regions in the world where similar economic and policy driving forces are likely to lead to agricultural intensification. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1470-160x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4561  
Permanent link to this record
 

 
Author Sieber, S.; Amjath-Babu, T.S.; Jansson, T.; Müller, K.; Tscherning, K.; Graef, F.; Pohle, D.; Helming, K.; Rudloff, B.; Saravia-Matus, B.S.; Gomez y Paloma, S. url  doi
openurl 
  Title Sustainability impact assessment using integrated meta-modelling: Simulating the reduction of direct support under the EU common agricultural policy (CAP) Type Journal Article
  Year 2013 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 33 Issue Pages 235-245  
  Keywords SIAT; CAP; sustainability; impact assessment; land use change; trade off analysis; model; Netherlands; systems  
  Abstract Assessing the impact of macro-level policy driven land use changes on regional sustainability is an important task that can facilitate complex decision making processes of introducing reforms. The research work demonstrates the ability of Sustainability Impact Assessment Tool (SIAT), a meta-model, in conducting ex ante spatially explicit cross sectoral impact assessments of changes in common agricultural policy (CAP). The meta-model is able to appraise impacts of CAP amendments on land use and their repercussions on multiple indicators of sustainability. The presented study comprehensively analyses the possible impacts of discontinuing direct financial support to farmers under CAP. The simulations of the meta-model are able to reveal the land use changes both at EU and regional levels as well as to bring forth the subsequent changes in a number of indicators representing the regional sustainability (for five case study regions). In a nutshell, the simulations indicate that a reduction in direct support brings in general, a decrease in farmed area, an increase in forested land, less fluctuation in natural vegetation coverage, increase in abandoned arable land area and negligible changes in built-up area despite regionally diverging land use trends. The simulated changes in sustainability indicators for the study regions in consequence to these land use changes show that the discontinuation of subsidies evokes responses that are in general climate friendly (reduction in methane and N2O emissions, diminishing energy use and reduction in global warming potential), economically beneficial (increase in gross value of agriculture) and socially desired (decrease in unemployment rate) as well as environmentally harmful (increase in pesticide use). Even though the appraisals of diversity indicators such as forest deadwood and farmland birds are not conclusive for all regions, the changes are positive for the former indicator and slightly negative for the latter in general. The trade-offs among these regional sustainability indicators using their directional associations are also presented for a comprehensive assessment of the impacts. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4479  
Permanent link to this record
 

 
Author König, H.J.; Uthes, S.; Schuler, J.; Zhen, L.; Purushothaman, S.; Suarma, U.; Sghaier, M.; Makokha, S.; Helming, K.; Sieber, S.; Chen, L.; Brouwer, F.; Morris, J.; Wiggering, H. doi  openurl
  Title Regional impact assessment of land use scenarios in developing countries using the FoPIA approach: findings from five case studies Type Journal Article
  Year 2013 Publication Journal of Environmental Management Abbreviated Journal J. Environ. Manage.  
  Volume 127 Suppl Issue Pages S56-S64  
  Keywords Conservation of Natural Resources; Developing Countries; Environmental Monitoring/*methods; (Ex-ante) impact assessment; Indicators; Land use change; Scenario study; Stakeholder participation; Sustainable development  
  Abstract The impact of land use changes on sustainable development is of increasing interest in many regions of the world. This study aimed to test the transferability of the Framework for Participatory Impact Assessment (FoPIA), which was originally developed in the European context, to developing countries, in which lack of data often prevents the use of data-driven impact assessment methods. The core aspect of FoPIA is the stakeholder-based assessment of alternative land use scenarios. Scenario impacts on regional sustainability are assessed by using a set of nine regional land use functions (LUFs), which equally cover the economic, social and environmental dimensions of sustainability. The cases analysed in this study include (1) the alternative spatial planning policies around the Merapi volcano and surrounding areas of Yogyakarta City, Indonesia; (2) the large-scale afforestation of agricultural areas to reduce soil erosion in Guyuan, China; (3) the expansion of soil and water conservation measures in the Oum Zessar watershed, Tunisia; (4) the agricultural intensification and the potential for organic agriculture in Bijapur, India; and (5) the land degradation and land conflicts resulting from land division and privatisation in Narok, Kenya. All five regions are characterised by population growth, partially combined with considerable economic development, environmental degradation problems and social conflicts. Implications of the regional scenario impacts as well as methodological aspects are discussed. Overall, FoPIA proved to be a useful tool for diagnosing regional human-environment interactions and for supporting the communication and social learning process among different stakeholder groups.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4474  
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P. url  doi
openurl 
  Title Simulating and delineating future land change trajectories across Europe Type Journal Article
  Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume Issue Pages in press  
  Keywords land use change; land system; modeling; scenario; Europe; ecosystem services  
  Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4996  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: