toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kyle, P.; Müller, C.; Calvin, K.; Thomson, A. url  doi
openurl 
  Title Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts Type Journal Article
  Year 2014 Publication Earth’s Future Abbreviated Journal Earth’s Future  
  Volume (up) 2 Issue Pages 83-98  
  Keywords integrated assessment; climate impacts; emissions mitigation; representative concentration pathway; land-use; carbon; stabilization; cmip5  
  Abstract This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the representative concentration pathways (RCPs). We build on the recently completed Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6W/m(2) in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2328-4277 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4531  
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Carter, T.R.; Harrison, P.A.; Rounsevell, M. doi  openurl
  Title Improving the representation of adaptation in climate change impact models Type Journal Article
  Year 2019 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume (up) 19 Issue 3 Pages 711-721  
  Keywords Adaptive capacity; Limits; Water; Land; Decision making; Integrated assessment; Land-Cover Change; Global Change; River-Basin; Integrated Assessment; Adaptive Capacity; Vulnerability; Variability; Precautionary; Agriculture; Management  
  Abstract Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5220  
Permanent link to this record
 

 
Author Ben Touhami, H.; Bellocchi, G. url  doi
openurl 
  Title Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
  Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics  
  Volume (up) 30 Issue Pages 356-364  
  Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france  
  Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1574-9541 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4697  
Permanent link to this record
 

 
Author Podhora, A.; Helming, K.; Adenäuer, L.; Heckelei, T.; Kautto, P.; Reidsma, P.; Rennings, K.; Turnpenny, J.; Jansen, J. url  doi
openurl 
  Title The policy-relevancy of impact assessment tools: Evaluating nine years of European research funding Type Journal Article
  Year 2013 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy  
  Volume (up) 31 Issue Pages 85-95  
  Keywords impact assessment tools; policy appraisal; science policy interface; sustainable development; european commission; affecting land-use; of-the-art; integrated assessment; sustainable development; agricultural systems; analytical framework; union; part  
  Abstract Since 2002, the European Commission has employed the instrument of ex-ante impact assessments (IA) to help focus its policy-making process on implementing sustainable development. Scientific tools should play an essential role of providing the evidence base to assess the impacts of alternative policy options. To identify the contribution of research funding for IA tool development, this paper analysed the variety of IA tools designed in projects funded by European Framework Programmes (FPs) 6 and 7. The paper is based on project information available on the European Cordis website, individual project websites and a verification of the results by the project coordinators. We analysed the projects from the interests of IA practitioners as tool users (European policy and impact areas addressed by the tools, jurisdictional application levels and tool categories). Out of the 7.781 projects funded in FP6 and FP7, 203 could be identified that designed tools for the IA process. Nearly half of them applied to environmental, agricultural and transport policy areas. Within these areas, the tools primarily addressed environmental impact areas, less economic and least social impact areas. The IA tools focused on European policies. Models represented the largest tool category, whereas approximately half of the tools could not be clearly categorized. Concerning our analysis criteria, the tool descriptions available on the internet were often unclear and thus may limit the application potential of the tools because of a mismatch of technical terms and categorisation criteria between tool providers and tool users. Future IA tools require a joint political and scientific typology and a narrowing of the gaps, e.g., with view to multi-jurisdictional application and a clear reference to the steps of the IA process. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4500  
Permanent link to this record
 

 
Author Kriegler, E.; Bauer, N.; Popp, A.; Humpenöder, F.; Leimbach, M.; Strefler, J.; Baumstark, L.; Bodirsky, B.L.; Hilaire, J.; Klein, D.; Mouratiadou, I.; Weindl, I.; Bertram, C.; Dietrich, J.-P.; Luderer, G.; Pehl, M.; Pietzcker, R.; Piontek, F.; Lotze-Campen, H.; Biewald, A.; Bonsch, M.; Giannousakis, A.; Kreidenweis, U.; Müller, C.; Rolinski, S.; Schultes, A.; Schwanitz, J.; Stevanovic, M.; Calvin, K.; Emmerling, J.; Fujimori, S.; Edenhofer, O. url  doi
openurl 
  Title Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century Type Journal Article
  Year 2017 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume (up) 42 Issue Pages 297-315  
  Keywords Shared Socio-economic Pathway; SSP5; Emission scenario; Energy transformation; Land-use change; Integrated assessment modeling  
  Abstract Highlights • The SSP5 scenarios mark the upper end of the scenario literature in fossil fuel use, food demand, energy use and greenhouse gas emissions. • The SSP5 marker scenario results in a radiative forcing pathway close to the highest Representative Concentration Pathway (RCP8.5). • An investigation of mitigation policies in SSP5 confirms high socio-economic challenges to mitigation in SSP5. • In SSP5, ambitious climate targets require land based carbon management options such as avoided deforestation and bioenergy production with CCS. • The SSP5 scenarios provide useful reference points for future climate change, impact, adaption, mitigation and sustainable development analysis. Abstract This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 5005  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: