toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, S.; Tao, F.; Zhang, Z. url  doi
openurl 
  Title Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009 Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 189 Issue Pages 43-50  
  Keywords Adaptation; Agriculture; Climate change; Crop; Extreme climate; Impacts; climate-change; spikelet sterility; heat-stress; crop yields; water-use; vulnerability; responses; period; CO2  
  Abstract Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations. In this study, changes in an accumulated thermal index (growing degree day, GDD), a high temperature stress index (>35 degrees C high temperature degree day, HDD), and a cold stress index (<20 degrees C cold degree day, CDD), were firstly investigated. Then, their impacts on rice yield were further quantified by a multivariable analysis. The results showed that in the past three decades, for early rice, late rice and single rice in western part, and single rice in other parts of the middle and lower reaches of Yangtze River, respectively, rice yield increased by 5.83%, 1.71%, 8.73% and 3.49% due to increase in GDD. Rice yield was generally more sensitive to high temperature stress than to cold temperature stress. It decreased by 0.14%, 0.32%, 0.34% and 0.14% due to increase in HDD, by contrast increased by 1.61%, 0.26%, 0.16% and 0.01% due to decrease in CDD, respectively. In addition, decreases in solar radiation reduced rice yield by 0.96%, 0.13%, 9.34% and 6.02%. In the past three decades, the positive impacts of increase in GDD and the negative impacts of decrease in solar radiation played dominant roles in determining overall climate impacts on yield. However, with climate warming in future, the positive impacts of increase in GDD and decrease in CDD will be offset by increase in HDD, resulting in overall negative climate impacts on yield. Our findings highlight the risk of heat stress on rice yield and the importance of developing integrated adaptation strategies to cope with heat stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4731  
Permanent link to this record
 

 
Author Webber, H.; Zhao, G.; Wolf, J.; Britz, W.; Vries, W. de; Gaiser, T.; Hoffmann, H.; Ewert, F. url  doi
openurl 
  Title Climate change impacts on European crop yields: Do we need to consider nitrogen limitation Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 123-134  
  Keywords Climate impact assessment; Nitrogen limitation; European crop yields; SIMPLACE Crop modelling framework; model calibration; winter-wheat; scale; co2; productivity; agriculture; strategies; scenarios; systems; growth  
  Abstract Global climate impact studies with crop models suggest that including nitrogen and water limitation causes greater negative climate change impacts on actual yields compared to water-limitation only. We simulated water limited and nitrogen water limited yields across the EU-27 to 2050 for six key crops with the SIMPLACE<LINTUL5, DRUNIR, HEAT> model to assess how important consideration of nitrogen limitation is in climate impact studies for European cropping systems. We further investigated how crop nitrogen use may change under future climate change scenarios. Our results suggest that inclusion of nitrogen limitation hardly changed crop yield response to climate for the spring-sown crops considered (grain maize, potato, and sugar beet). However, for winter-sown crops (winter barley, winter rapeseed and winter wheat), simulated impacts to 2050 were more negative when nitrogen limitation was considered, especially with high levels of water stress. Future nitrogen use rates are likely to decrease due to climate change for spring-sown crops, largely in parallel with their yields. These results imply that climate change impact studies for winter-sown crops should consider N-fertilization. Specification of future N fertilization rates is a methodological challenge that is likely to need integrated assessment models to address.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4726  
Permanent link to this record
 

 
Author Weindl, I.; Lotze-Campen, H.; Popp, A.; Müller, C.; Havlík, P.; Herrero, M.; Schmitz, C.; Rolinski, S. url  doi
openurl 
  Title Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 9 Pages 094021  
  Keywords livestock; climate impacts; land use modeling; adaptation costs; production systems; greenhouse-gas emissions; global change; management implications; developing-countries; crop productivity; change mitigation; food security; model; impacts; carbon  
  Abstract Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource-and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4718  
Permanent link to this record
 

 
Author Makowski, D.; Asseng, S.; Ewert, F.; Bassu, S.; Durand, J.L.; Li, T.; Martre, P.; Adam, M.; Aggarwal, P.K.; Angulo, C.; Baron, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Boogaard, H.; Boote, K.J.; Bouman, B.; Bregaglio, S.; Brisson, N.; Buis, S.; Cammarano, D.; Challinor, A.J.; Confalonieri, R.; Conijn, J.G.; Corbeels, M.; Deryng, D.; De Sanctis, G.; Doltra, J.; Fumoto, T.; Gaydon, D.; Gayler, S.; Goldberg, R.; Grant, R.F.; Grassini, P.; Hatfield, J.L.; Hasegawa, T.; Heng, L.; Hoek, S.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Jongschaap, R.E.E.; Jones, J.W.; Kemanian, R.A.; Kersebaum, K.C.; Kim, S.-H.; Lizaso, J.; Marcaida, M.; Müller, C.; Nakagawa, H.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.J.; Olesen, J.E.; Oriol, P.; Osborne, T.M.; Palosuo, T.; Pravia, M.V.; Priesack, E.; Ripoche, D.; Rosenzweig, C.; Ruane, A.C.; Ruget, F.; Sau, F.; Semenov, M.A.; Shcherbak, I.; Singh, B.; Singh, U.; Soo, H.K.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tang, L.; Tao, F.; Teixeira, E.I.; Thorburn, P.; Timlin, D.; Travasso, M.; Rötter, R.P.; Waha, K.; Wallach, D.; White, J.W.; Wilkens, P.; Williams, J.R.; Wolf, J.; Yin, X.; Yoshida, H.; Zhang, Z.; Zhu, Y. url  doi
openurl 
  Title A statistical analysis of three ensembles of crop model responses to temperature and CO2 concentration Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 214-215 Issue Pages 483-493  
  Keywords climate change; crop model; emulator; meta-model; statistical model; yield; climate-change; wheat yields; metaanalysis; uncertainty; simulation; impacts  
  Abstract Ensembles of process-based crop models are increasingly used to simulate crop growth for scenarios of temperature and/or precipitation changes corresponding to different projections of atmospheric CO2 concentrations. This approach generates large datasets with thousands of simulated crop yield data. Such datasets potentially provide new information but it is difficult to summarize them in a useful way due to their structural complexities. An associated issue is that it is not straightforward to compare crops and to interpolate the results to alternative climate scenarios not initially included in the simulation protocols. Here we demonstrate that statistical models based on random-coefficient regressions are able to emulate ensembles of process-based crop models. An important advantage of the proposed statistical models is that they can interpolate between temperature levels and between CO2 concentration levels, and can thus be used to calculate temperature and [CO2] thresholds leading to yield loss or yield gain, without rerunning the original complex crop models. Our approach is illustrated with three yield datasets simulated by 19 maize models, 26 wheat models, and 13 rice models. Several statistical models are fitted to these datasets, and are then used to analyze the variability of the yield response to [CO2] and temperature. Based on our results, we show that, for wheat, a [CO2] increase is likely to outweigh the negative effect of a temperature increase of +2 degrees C in the considered sites. Compared to wheat, required levels of [CO2] increase are much higher for maize, and intermediate for rice. For all crops, uncertainties in simulating climate change impacts increase more with temperature than with elevated [CO2].  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4714  
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. url  doi
openurl 
  Title Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China Type Journal Article
  Year 2015 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 208 Issue Pages 12-20  
  Keywords agronomic management; climate change; food security; impact; water stress; yield potential; resource use efficiency; northeast china; climate-change; food security; environmental-quality; crop productivity; plain; agriculture; management; intensification  
  Abstract The precise spatially explicit knowledge about crop yield potentials and yield gaps is essential to guide sustainable intensification of agriculture. In this study, the maize yield potentials from 1980 to 2008 across the major maize production regions of China were firstly estimated by county using ensemble simulation of a well-validated large scale crop model, i.e., MCWLA-Maize model. Then, the temporal and spatial patterns of maize yield potentials and yield gaps during 1980-2008 were presented and analyzed. The results showed that maize yields became stagnated at 32.4% of maize-growing areas during the period. In the major maize production regions, i.e., northeastern China, the North China Plain (NCP) and southwestern China, yield gap percentages were generally less than 40% and particularly less than 20% in some areas. By contrast, in northern and southern China, where actual yields were relatively lower, yield gap percentages were generally larger than 40%. The areas with yield gap percentages less than 20% and less than 40% accounted for 8.2% and 27.6% of maize-growing areas, respectively. During the period, yield potentials decreased in the NCP and southwestern China due to increase in temperature and decrease in solar radiation; by contrast, increased in northern, northeastern and southeastern China due to increases in both temperature and solar radiation. Yield gap percentages decreased generally by 2% per year across the major maize production regions, although increased in some areas in northern and northeastern China. The shrinking of yield gap was due to increases in actual yields and decreases in yield potentials in the NCP and southwestern China; and due to larger increases in actual yields than in yield potentials in northeastern and southeastern China. The results highlight the importance of sustainable intensification of agriculture to close yield gaps, as well as breeding new cultivars to increase yield potentials, to meet the increasing food demand. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4715  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: