toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. url  doi
openurl 
  Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 120 Issue Pages 61-75  
  Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations  
  Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4737  
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P. url  doi
openurl 
  Title Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 44-52  
  Keywords adaptation; crop production; cultivars; extreme climate; impacts; phenology; high-temperature stress; climate-change; winter-wheat; spring wheat; crop yields; day length; trends; variability; senescence; phenology  
  Abstract Heat stress impacts on crop growth and yield have been investigated by controlled-environment experiments, however little is known about the impacts under field conditions at large spatial and temporal scales, particularly in a setting with farmers’ autonomous adaptations. Here, using detailed experiment Observations at 34 national agricultural meteorological stations spanning from 1981 to 2009 in the Huang-Huai-Hai Plain (HHHP) of China, we investigated the changes in climate and heat stress during wheat reproductive growing period (from heading to maturity) and the impacts of climate change and heat stress on reproductive growing duration (RGD) and yield in a setting with farmers’ autonomous adaptations. We found that RGD and growing degree days above 0 degrees C (GDD) from heading to maturity increased, which increased yield by similar to 14.85%, although heat stress had negative impacts on RGD and yield. During 1981-2009, high temperature (>34 degrees C) degree days (HDD) increased in the northern part, however decreased in the middle and southern parts of HHHP due to advances in heading and maturity dates. Change in HDD, together with increase in GDD and decrease in solar radiation (SRD), jointly increased wheat yield in the northern and middle parts but reduced it in the southern part of HHHP. During the study period, increase in GDD and decrease in SRD had larger impacts on yield than change in HDD. However, with climate warming of 2 degrees C, damage of heat stress on yield may offset a large portion of the benefits from increases in RGD and GDD, and eventually result in net negative impacts on yield in the northern part of HHHP. Our study showed that shifts in cultivars and wheat production system dynamics in the past three decades reduced heat stress impacts in the HHHP. The insights into crop response and adaptation to climate change and climate extremes provide excellent evidences and basis for improving climate change impact study and designing adaptation measures for the future. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4743  
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z. url  doi
openurl 
  Title Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009 Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 189 Issue Pages 43-50  
  Keywords Adaptation; Agriculture; Climate change; Crop; Extreme climate; Impacts; climate-change; spikelet sterility; heat-stress; crop yields; water-use; vulnerability; responses; period; CO2  
  Abstract Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations. In this study, changes in an accumulated thermal index (growing degree day, GDD), a high temperature stress index (>35 degrees C high temperature degree day, HDD), and a cold stress index (<20 degrees C cold degree day, CDD), were firstly investigated. Then, their impacts on rice yield were further quantified by a multivariable analysis. The results showed that in the past three decades, for early rice, late rice and single rice in western part, and single rice in other parts of the middle and lower reaches of Yangtze River, respectively, rice yield increased by 5.83%, 1.71%, 8.73% and 3.49% due to increase in GDD. Rice yield was generally more sensitive to high temperature stress than to cold temperature stress. It decreased by 0.14%, 0.32%, 0.34% and 0.14% due to increase in HDD, by contrast increased by 1.61%, 0.26%, 0.16% and 0.01% due to decrease in CDD, respectively. In addition, decreases in solar radiation reduced rice yield by 0.96%, 0.13%, 9.34% and 6.02%. In the past three decades, the positive impacts of increase in GDD and the negative impacts of decrease in solar radiation played dominant roles in determining overall climate impacts on yield. However, with climate warming in future, the positive impacts of increase in GDD and decrease in CDD will be offset by increase in HDD, resulting in overall negative climate impacts on yield. Our findings highlight the risk of heat stress on rice yield and the importance of developing integrated adaptation strategies to cope with heat stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4731  
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Kimball, B.A.; Siebert, S.; White, J.W.; Wall, G.W.; Ottman, M.J.; Trawally, D.N.A.; Gaiser, T. url  doi
openurl 
  Title Simulating canopy temperature for modelling heat stress in cereals Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 77 Issue Pages 143-155  
  Keywords canopy temperature; heat stress; cereals; crop models; profile relationships; crop production; climate-change; spring wheat; field plots; growth; maize; water; yields; variability  
  Abstract Crop models must be improved to account for the effects of heat stress events on crop yields. To date, most approaches in crop models use air temperature to define heat stress intensity as the cumulative sum of thermal times (TT) above a high temperature threshold during a sensitive period for yield formation. However, observational evidence indicates that crop canopy temperature better explains yield reductions associated with high temperature events than air temperature does. This study presents a canopy level energy balance using Monin ObukhovSimilarity Theory (MOST) with simplifications about the canopy resistance that render it suitable for application in crop models and other models of the plant environment. The model is evaluated for a uniform irrigated wheat canopy in Arizona and rainfed maize in Burkina Faso. No single variable regression relationships for key explanatory variables were found that were consistent across sowing dates to explain the deviation of canopy temperature from air temperature. Finally, thermal times determined with simulated canopy temperatures were able to reproduce thermal times calculated with observed canopy temperature, whereas those determined with air temperatures were not. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4730  
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Stehfest, E.; Siebert, S.; Müller, C.; Ewert, F. url  doi
openurl 
  Title Simulation of the phenological development of wheat and maize at the global scale Type Journal Article
  Year 2015 Publication Global Ecology and Biogeography Abbreviated Journal Glob. Ecol. Biogeogr.  
  Volume 24 Issue 9 Pages 1018-1029  
  Keywords Agricultural management; crop calendars; cultivar; variety characteristics; global crop modelling; global harvest dates; phenology; climate-change; winter-wheat; annual crops; photoperiod sensitivity; geographical variation; temperature; responses; adaptation; cultivars; model  
  Abstract AimTo derive location-specific parameters that reflect the geographic differences among cultivars in vernalization requirements, sensitivity to day length (photoperiod) and temperature, which can be used to simulate the phenological development of wheat and maize at the global scale. LocationGlobal. Methods Based on crop calendar observations and literature describing the large-scale patterns of phenological characteristics of cultivars, we developed algorithms to compute location-specific parameters to represent this large-scale pattern. Vernalization requirements were related to the duration and coldness of winter, sensitivity to day length was assumed to be represented by the minimum and maximum day lengths occurring at a location, and sensitivity to temperature was related to temperature conditions during the vegetative development phase of the crop. Results Application of the derived location-specific parameters resulted in high agreement between simulated and observed lengths of the cropping period. Agreement was especially high for wheat, with mean absolute errors of less than 3 weeks. In the main maize cropping regions, cropping periods were over- and underestimated by 0.5-1.5 months. We also found that interannual variability in simulated wheat harvest dates was more realistic when accounting for photoperiod effects. Main conclusions The methodology presented here provides a good basis for modelling the phenological characteristics of cultivars at the global scale. We show that current global patterns of growing season length as described in cropping calendars can be largely reproduced by phenology models if location-specific parameters are derived from temperature and day length indicators. Growing seasons can be modelled more accurately for wheat than for maize, especially in warm regions. Our method for computing parameters for phenology models from temperature and day length offers opportunities to improve the simulation of crop productivity by crop simulation models developed for large spatial areas and for long-term climate impact projections that account for adaptation in the selection of varieties  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-822x ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4729  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: