|   | 
Details
   web
Records
Author Dumont, B.; Vancutsem, F.; Seutin, B.; Bodson, B.; Destain, J.-P.; Destain, M.-F.
Title Simulation de la croissance du blé à l’aide de modèles écophysiologiques: Synthèse bibliographique des méthodes, potentialités et limitations Type Journal Article
Year 2012 Publication Biotechnologie, Agronomie, Société et Environnement Abbreviated Journal Biotechnologie, Agronomie, Société et Environnement
Volume 163 Issue Pages 376-386
Keywords crops; growth; soil; Triticum; wheats; calibration; optimization methods
Abstract Crop models describe the growth and development of a crop interacting with its surrounding agro-environmental conditions (soil, climate and the close conditions of the plant). However, the implementation of such models remains difficult because of the high number of explanatory variables and parameters. It often happens that important discrepancies appear between measured and simulated values. This article aims to highlight the different sources of uncertainty related to the use of crop models, as well as the actual methods that allow a compensation for or, at least, a consideration of these sources of error during analysis of the model results. This article presents a literature review, which firstly synthesises the general mathematical structure of crop models. The main criteria for evaluating crop models are then described. Finally, several methods used for improving models are given. Parameter estimation methods, including frequentist and Bayesian approaches, are presented and data assimilation methods are reviewed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language French Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4584
Permanent link to this record
 

 
Author Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rotter, R.; Kersebaum, K.C.; Olesen, J.E.; Patil, R.H.; Saylan, L.; Caldag, B.; Caylak, O.
Title Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria Type Journal Article
Year 2013 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 151 Issue 6 Pages 813-835
Keywords simulate yield response; climate-change scenarios; central-europe; nitrogen dynamics; high-temperature; future climate; elevated co2; soil; growth; variability
Abstract The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4601
Permanent link to this record
 

 
Author Elliott, J.; Müller, C.; Deryng, D.; Chryssanthacopoulos, J.; Boote, K.J.; Büchner, M.; Foster, I.; Glotter, M.; Heinke, J.; Iizumi, T.; Izaurralde, R.C.; Mueller, N.D.; Ray, D.K.; Rosenzweig, C.; Ruane, A.C.; Sheffield, J.
Title The Global Gridded Crop Model Intercomparison: data and modeling protocols for Phase 1 (v1.0) Type Journal Article
Year 2015 Publication Geoscientific Model Development Abbreviated Journal Geosci. Model Dev.
Volume 8 Issue 2 Pages 261-277
Keywords land-surface model; climate-change; systems simulation; high-resolution; water; carbon; yield; agriculture; patterns; growth
Abstract We present protocols and input data for Phase 1 of the Global Gridded Crop Model Intercomparison, a project of the Agricultural Model Intercomparison and Improvement Project (AgMIP). The project includes global simulations of yields, phenologies, and many land-surface fluxes using 12-15 modeling groups for many crops, climate forcing data sets, and scenarios over the historical period from 1948 to 2012. The primary outcomes of the project include (1) a detailed comparison of the major differences and similarities among global models commonly used for large-scale climate impact assessment, (2) an evaluation of model and ensemble hindcasting skill, (3) quantification of key uncertainties from climate input data, model choice, and other sources, and (4) a multi-model analysis of the agricultural impacts of large-scale climate extremes from the historical record.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1991-9603 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4559
Permanent link to this record
 

 
Author Elsgaard, L.; Børgesen, C.D.; Olesen, J.E.; Siebert, S.; Ewert, F.; Peltonen-Sainio, P.; Rötter, R.P.; Skjelvåg, A.O.
Title Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe Type Journal Article
Year 2012 Publication Food Additives & Contaminants: Part A Abbreviated Journal Food Addit. Contam. Part A
Volume 29 Issue 10 Pages 1514-1526
Keywords Agriculture/*economics/trends; Animals; Avena/chemistry/economics/*growth & development/microbiology; *Climate Change/economics; Crops, Agricultural/chemistry/economics/*growth & development/microbiology; Europe; *Food Safety; Forecasting/methods; Fungi/growth & development/metabolism; Humans; Models, Biological; Models, Economic; Mycotoxins/analysis/biosynthesis; Soil Pollutants/adverse effects/analysis; Spatio-Temporal Analysis; Triticum/chemistry/economics/*growth & development/microbiology; Uncertainty; Weather; Zea mays/chemistry/economics/*growth & development/microbiology
Abstract Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45-65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45-55°N, oat had its maximum at 55-65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1944-0049 1944-0057 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4585
Permanent link to this record
 

 
Author Eyshi Rezaei, E.; Siebert, S.; Ewert, F.
Title Impact of data resolution on heat and drought stress simulated for winter wheat in Germany Type Journal Article
Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 65 Issue Pages 69-82
Keywords crop modeling; heat; drought; spatial resolution; wheat; high-temperature stress; climate-change; grain-yield; crop models; data aggregation; abiotic stress; short periods; variability; growth; duration
Abstract Heat and drought stress can reduce crop yields considerably which is increasingly assessed with crop models for larger areas. Applying these models originally developed for the field scale at large spatial extent typically implies the use of input data with coarse resolution. Little is known about the effect of data resolution on the simulated impact of extreme events like heat and drought on crops. Hence, in this study the effect of input and output data aggregation on simulated heat and drought stress and their impact on yield of winter wheat is systematically analyzed. The crop model SIMPLACE was applied for the period 1980-2011 across Germany at a resolution of 1 km x 1 km. Weather and soil input data and model output data were then aggregated to 10 km x 10 km, 25 km x 25 km, 50 km x 50 km and 100 km x 100 km resolution to analyze the aggregation effect on heat and drought stress and crop yield. We found that aggregation of model input and output data barely influenced the mean and median of heat and drought stress reduction factors and crop yields simulated across Germany. However, data aggregation resulted in less spatial variability of model results and a reduced severity of simulated stress events, particularly for regions with high heterogeneity in weather and soil conditions. Comparisons of simulations at coarse resolution with those at high resolution showed distinct patterns of positive and negative deviations which compensated each other so that aggregation effects for large regions were small for mean or median yields. Therefore, modelling at a resolution of 100 km x 100 km was sufficient to determine mean wheat yield as affected by heat and drought stress for Germany. Further research is required to clarify whether the results can be generalized across crop models differing in structure and detail. Attention should also be given to better understand the effect of data resolution on interactions between heat and drought impacts. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4751
Permanent link to this record