toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Eza, U.; Shtiliyanova, A.; Borras, D.; Bellocchi, G.; Carrère, P.; Martin, R. url  doi
openurl 
  Title (up) An open platform to assess vulnerabilities to climate change: An application to agricultural systems Type Journal Article
  Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics  
  Volume 30 Issue Pages 389-396  
  Keywords climate change; grasslands; modeling platform; vulnerability assessment; pasture simulation-model; software component; solar-radiation; crop production; change impacts; adaptation; indicator; makers  
  Abstract Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1574-9541 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4708  
Permanent link to this record
 

 
Author Ben Touhami, H.; Bellocchi, G. url  doi
openurl 
  Title (up) Bayesian calibration of the Pasture Simulation model (PaSim) to simulate European grasslands under water stress Type Journal Article
  Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics  
  Volume 30 Issue Pages 356-364  
  Keywords Bayesian calibration framework; Grasslands; Pasture Simulation model; (PaSim); integrated assessment models; chain monte-carlo; climate-change; computation; impacts; vulnerability; likelihoods; france  
  Abstract As modeling becomes a more widespread practice in the agro-environmental sciences, scientists need reliable tools to calibrate models against ever more complex and detailed data. We present a generic Bayesian computation framework for grassland simulation, which enables parameter estimation in the Bayesian formalism by using Monte Carlo approaches. We outline the underlying rationale, discuss the computational issues, and provide results from an application of the Pasture Simulation model (PaSim) to three European grasslands. The framework was suited to investigate the challenging problem of calibrating complex biophysical models to data from altered scenarios generated by precipitation reduction (water stress conditions). It was used to infer the parameters of manipulated grassland systems and to assess the gain in uncertainty reduction by updating parameter distributions using measurements of the output variables.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1574-9541 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4697  
Permanent link to this record
 

 
Author Sandor, R.; Ehrhardt, F.; Grace, P.; Recous, S.; Smith, P.; Snow, V.; Soussana, J.-F.; Basso, B.; Bhatia, A.; Brilli, L.; Doltra, J.; Dorich, C.D.; Doro, L.; Fitton, N.; Grant, B.; Harrison, M.T.; Kirschbaum, M.U.F.; Klumpp, K.; Laville, P.; Leonard, J.; Martin, R.; Massad, R.-S.; Moore, A.; Myrgiotis, V.; Pattey, E.; Rolinski, S.; Sharp, J.; Skiba, U.; Smith, W.; Wu, L.; Zhang, Q.; Bellocchi, G. doi  openurl
  Title (up) Ensemble modelling of carbon fluxes in grasslands and croplands Type Journal Article
  Year 2020 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 252 Issue Pages 107791  
  Keywords C fluxes; croplands; grasslands; multi-model ensemble; multi-model; median (mmm); soil organic-carbon; greenhouse-gas emissions; climate-change impacts; crop model; data aggregation; use efficiency; n2o emissions; maize; yield; wheat; productivity  
  Abstract Croplands and grasslands are agricultural systems that contribute to land–atmosphere exchanges of carbon (C). We evaluated and compared gross primary production (GPP), ecosystem respiration (RECO), net ecosystem exchange (NEE) of CO2, and two derived outputs – C use efficiency (CUE=-NEE/GPP) and C emission intensity (IntC= -NEE/Offtake [grazed or harvested biomass]). The outputs came from 23 models (11 crop-specific, eight grassland-specific, and four models covering both systems) at three cropping sites over several rotations with spring and winter cereals, soybean and rapeseed in Canada, France and India, and two temperate permanent grasslands in France and the United Kingdom. The models were run independently over multi-year simulation periods in five stages (S), either blind with no calibration and initialization data (S1), using historical management and climate for initialization (S2), calibrated against plant data (S3), plant and soil data together (S4), or with the addition of C and N fluxes (S5). Here, we provide a framework to address methodological uncertainties and contextualize results. Most of the models overestimated or underestimated the C fluxes observed during the growing seasons (or the whole years for grasslands), with substantial differences between models. For each simulated variable, changes in the multi-model median (MMM) from S1 to S5 was used as a descriptor of the ensemble performance. Overall, the greatest improvements (MMM approaching the mean of observations) were achieved at S3 or higher calibration stages. For instance, grassland GPP MMM was equal to 1632 g C m−2 yr-1 (S5) while the observed mean was equal to 1763 m-2 yr-1 (average for two sites). Nash-Sutcliffe modelling efficiency coefficients indicated that MMM outperformed individual models in 92.3 % of cases. Our study suggests a cautious use of large-scale, multi-model ensembles to estimate C fluxes in agricultural sites if some site-specific plant and soil observations are available for model calibration. The further development of crop/grassland ensemble modelling will hinge upon the interpretation of results in light of the way models represent the processes underlying C fluxes in complex agricultural systems (grassland and crop rotations including fallow periods).  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 5230  
Permanent link to this record
 

 
Author Lehtonen, H.; Palosuo, T.; Korhonen, P.; Liu, X. url  doi
openurl 
  Title (up) Higher Crop Yield Levels in the North Savo Region—Means and Challenges Indicated by Farmers and Their Close Stakeholders Type Journal Article
  Year 2018 Publication Agriculture Abbreviated Journal Agriculture  
  Volume 8 Issue 7 Pages 93  
  Keywords northern Europe; forage grasslands; spring cereals; drainage; soil conidtions; farm management; agricultural policy  
  Abstract The sustainable intensification of farming systems is expected to increase food supply and reduce the negative environmental effects of agriculture. It is also seen as an effective adaptation and mitigation strategy in response to climate change. Our aim is to determine farmers’ and other stakeholders’ views on how higher crop yields can be achieved from their currently low levels. This was investigated in two stakeholder workshops arranged in North Savo, Finland, in 2014 and 2016. The workshop participants, who were organized in discussion groups, considered some agricultural policies to discourage the improvement of crop yields. Policy schemes were seen to support extensification and reduce the motivation for yield improvements. However, the most important means for higher crop yields indicated by workshop participants were improved soil conditions with drainage and liming, in addition to improved crop rotations, better sowing techniques, careful selection of cultivars and forage grass mixtures. Suggested solutions for improving both crop yields and farm income also included optimized use of inputs, focusing production at the most productive fields and actively developed farming skills and knowledge sharing. These latter aspects were more pronounced in 2016, suggesting that farmers’ skills are increasingly being perceived as important.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2077-0472 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5203  
Permanent link to this record
 

 
Author Gomara, I.; Bellocchi, G.; Martin, R.; Rodriguez-Fonseca, B.; Ruiz-Ramos, M. doi  openurl
  Title (up) Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 280 Issue Pages 107768  
  Keywords climate variability; grasslands; potential yield; climate services; forage production forecasts; french massif central; pasture simulation-model; dry-matter production; atmospheric; circulation; crop yield; SST anomalies; maize yield; managed grasslands; storm track; ENSO; impacts  
  Abstract Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5233  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: