toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C. url  doi
openurl 
  Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
  Year (down) 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 6 Pages 064029  
  Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios  
  Abstract The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4627  
Permanent link to this record
 

 
Author Ghaley, B.B.; Porter, J.R. doi  openurl
  Title Determination of biomass accumulation in mixed belts of Salix, Corylus and Alnus species in combined food and energy production system Type Journal Article
  Year (down) 2014 Publication Biomass and Bioenergy Abbreviated Journal Biomass and Bioenergy  
  Volume 63 Issue Pages 86-91  
  Keywords allometric equation; destructive and non-destructive method; stool and biomass yield; bio-energy belts; food and fodder crops; short rotation woody crops; short-rotation forestry; willow; plantations; sweden; coppice; equations; growth; poplar; trees; yield  
  Abstract Given the energetic, demographic and the climatic challenges faced today, we designed a combined food and energy (CFE) production system integrating food, fodder and mixed belts of Salix, Alnus and Corylus sp. as bioenergy belts. The objective was to assess the shoot dry weight-stem diameter allometric relationship based on stem diameter at 10 (SD10) and 55 cm (SD55) from the shoot base in the mixed bioenergy belts. Allometric relations based on SD10 and SD55 explained 90-96% and 90-98% of the variation in shoot dry weights respectively with no differences between the destructive and the non-destructive methods. The individual stool yields varied widely among the species and within willow species with biomass yield range of 37.60-92.00 oven dry tons (ODT) ha (1) in 4-year growth cycle. The biomass yield of the bioenergy belt, predicted by allometric relations was 48.84 ODT ha 1 in 4-year growth cycle corresponding to 12.21 ODT ha (1) year (1). The relatively high biomass yield is attributed to the border effects and the ‘fertilizing effect’ of alder due to nitrogen fixation, benefitting other SWRC components. On termination of 4-year growth cycle, the bioenergy belts were harvested and the biomass yield recorded was 12.54 ODT ha (1) year (1), in close proximity to the biomass yield predicted by the allometric equations, lending confidence and robustness of the model for biomass yield determination in such integrated agro-ecosystem. (C) 2014 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0961-9534 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4624  
Permanent link to this record
 

 
Author Ghaley, B.B.; Vesterdal, L.; Porter, J.R. url  doi
openurl 
  Title Quantification and valuation of ecosystem services in diverse production systems for informed decision-making Type Journal Article
  Year (down) 2014 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy  
  Volume 39 Issue Pages 139-149  
  Keywords bio-physical quantification; combined food and energy system; economic valuation field measurements; land management; marketable and non-marketable ecosystem services; land-use change; carbon; farm; efficiency; crops; china; model; scale; field  
  Abstract The empirical evidence of decline in ecosystem services (ES) over the last century has reinforced the call for ES quantification, monitoring and valuation. Usually, only provisioning ES are marketable and accounted for, whereas regulating, supporting and cultural ES are typically non-marketable and overlooked in connection with land-use or management decisions. The objective of this study was to quantify and value total ES (marketable and non-marketable) of diverse production systems and management intensities in Denmark to provide a basis for decisions based on economic values. The production systems were conventional wheat (Cwheat), a combined food and energy (CFE) production system and beech forest. Marketable (provisioning ES) and non-marketable ES (supporting, regulating and cultural) ES were quantified by dedicated on-site field measurements supplemented by literature data. The value of total ES was highest in CFE (US$ 3142 ha(-1) yr(-1)) followed by Cwheat (US$ 2767 ha (1) yr(-1)) and beech forest (US$ 2328 ha(-1) yr(-1)). As the production system shifted from Cwheat – CFE-beech, the marketable ES share decreased from 88% to 75% in CFE and 55% in beech whereas the non-marketable ES share increased to 12%, 25% and 45% of total ES in Cwheat, CFE and beech respectively, demonstrating production system and management effects on ES values. Total ES valuation, disintegrated into marketable and non-marketable share is a potential way forward to value ES and `tune’ our production systems for enhanced ES provision. Such monetary valuation can be used by policy makers and land managers as a tool to assess ES value and monitor the sustained flow of ES. The application of ES-based valuation for land management can enhance ES provision for maintaining the productive capacity of the land without depending on the external fossil-based fertilizer and chemical input. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4623  
Permanent link to this record
 

 
Author Zhen, L.; Deng, X.; Wei, Y.; Jiang, Q.; Lin, Y.; Helming, K.; Wang, C.; König, H.J.; Hu, J. url  doi
openurl 
  Title Future land use and food security scenarios for the Guyuan district of remote western China Type Journal Article
  Year (down) 2014 Publication iForest Abbreviated Journal iForest  
  Volume 7 Issue 6 Pages 372-384  
  Keywords land-use patterns; scenario analysis; dynamics of land systems modeling; food security; guyuan district; north-central china; cultivated land; dynamics; conversion; policy  
  Abstract Government policy is a major human factor that causes changes in land use. Decisions on land management and land-use planning, as well as the analysis and quantification of policy consequences, may greatly benefit from the simulation of the dynamics of land-use systems. In the present study, we predicted land-use changes and their potential impacts on food security in the environmentally fragile Guyuan District, Ningxia Hui Autonomous Region (north-central China), under the influence of a program to convert sloping agricultural land to conservation uses. Baseline and conservation policy scenarios (2005 to 2020) were developed based on input from local stakeholders and expert knowledge. For the baseline and conservation policies, we formulated high-, moderate-, and low-growth scenarios, analyzed the driving mechanisms responsible for the land-use dynamics, and then applied a previously developed “dynamics of land systems” model to simulate changes in land uses based on the driving mechanisms. We found that spatially explicit policies can promote the conversion of land to more sustainable uses; however, decreasing the amount of agricultural and urban land and increasing grassland and forest cover will increase the risk of grain shortages, and the effect will be more severe under the conservation and high- growth scenarios than under the baseline and low-growth scenarios. The Guyuan case study suggests that, during the next decade, important trade-offs between environmental conservation and food security will inevitably occur. Future land-use decisions should carefully consider the balance between land resource conservation, agricultural production, and urban expansion.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1971-7458 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4547  
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M. url  doi
openurl 
  Title Cultivating resilience by empirically revealing response diversity Type Journal Article
  Year (down) 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 25 Issue Pages 186-193  
  Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather  
  Abstract Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4525  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: