toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bai, H.; Tao, F. doi  openurl
  Title Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 211 Issue Pages 89-105  
  Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize  
  Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.  
  Address 2017-08-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium (up)  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5174  
Permanent link to this record
 

 
Author Mäkinen, H.; Kaseva, J.; Trnka, M.; Balek, J.; Kersebaum, K.C.; Nendel, C.; Gobin, A.; Olesen, J.E.; Bindi, M.; Ferrise, R.; Moriondo, M.; Rodriguez, A.; Ruiz-Ramos, M.; Takáč, J.; Bezák, P.; Ventrella, D.; Ruget, F.; Capellades, G.; Kahiluoto, H. doi  openurl
  Title Sensitivity of European wheat to extreme weather Type Journal Article
  Year 2018 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 222 Issue Pages 209-217  
  Keywords European wheat; Cultivar; Weather; Extreme; Climate change; Yield response; High-Temperature; Heat-Stress; Use Efficiency; Growth-Stages; Winter-Wheat; Yield; Crop; Barley; Tolerance  
  Abstract The frequency and intensity of extreme weather is increasing concomitant with changes in the global climate change. Although wheat is the most important food crop in Europe, there is currently no comprehensive empirical information available regarding the sensitivity of European wheat to extreme weather. In this study, we assessed the sensitivity of European wheat yields to extreme weather related to phenology (sowing, heading) in cultivar trials across Europe (latitudes 37.21 degrees to 61.34 degrees and longitudes- 6.02 degrees to 26.24 degrees) during the period 1991-2014. All the observed agro-climatic extremes (>= 31 degrees C, >= 35 degrees C, or drought around heading; >= 35 degrees C from heading to maturity; excessive rainfall; heavy rainfall and low global radiation) led to marked yield penalties in a selected set of European cultivars, whereas few cultivars were found to with no yield penalty in such conditions. There were no European wheat cultivars that responded positively (+ 10%) to drought after sowing, or frost during winter (- 15 degrees C and – 20 degrees C). Positive responses to extremes were often shown by cultivars associated with specific regions, such as good performance under high temperatures by southern-origin cultivars. Consequently, a major future breeding challenge will be to evaluate the potential of combining such cultivar properties with other properties required under different growing conditions with, for example, long day conditions at higher latitudes, when the intensity and frequency of extremes rapidly increase.  
  Address 2018-06-05  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium (up)  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5200  
Permanent link to this record
 

 
Author Tao, F.; Zhang, Z.; Zhang, S.; Rötter, R.P. url  doi
openurl 
  Title Heat stress impacts on wheat growth and yield were reduced in the Huang-Huai-Hai Plain of China in the past three decades Type Journal Article
  Year 2015 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 71 Issue Pages 44-52  
  Keywords adaptation; crop production; cultivars; extreme climate; impacts; phenology; high-temperature stress; climate-change; winter-wheat; spring wheat; crop yields; day length; trends; variability; senescence; phenology  
  Abstract Heat stress impacts on crop growth and yield have been investigated by controlled-environment experiments, however little is known about the impacts under field conditions at large spatial and temporal scales, particularly in a setting with farmers’ autonomous adaptations. Here, using detailed experiment Observations at 34 national agricultural meteorological stations spanning from 1981 to 2009 in the Huang-Huai-Hai Plain (HHHP) of China, we investigated the changes in climate and heat stress during wheat reproductive growing period (from heading to maturity) and the impacts of climate change and heat stress on reproductive growing duration (RGD) and yield in a setting with farmers’ autonomous adaptations. We found that RGD and growing degree days above 0 degrees C (GDD) from heading to maturity increased, which increased yield by similar to 14.85%, although heat stress had negative impacts on RGD and yield. During 1981-2009, high temperature (>34 degrees C) degree days (HDD) increased in the northern part, however decreased in the middle and southern parts of HHHP due to advances in heading and maturity dates. Change in HDD, together with increase in GDD and decrease in solar radiation (SRD), jointly increased wheat yield in the northern and middle parts but reduced it in the southern part of HHHP. During the study period, increase in GDD and decrease in SRD had larger impacts on yield than change in HDD. However, with climate warming of 2 degrees C, damage of heat stress on yield may offset a large portion of the benefits from increases in RGD and GDD, and eventually result in net negative impacts on yield in the northern part of HHHP. Our study showed that shifts in cultivars and wheat production system dynamics in the past three decades reduced heat stress impacts in the HHHP. The insights into crop response and adaptation to climate change and climate extremes provide excellent evidences and basis for improving climate change impact study and designing adaptation measures for the future. (C) 2015 Elsevier B.V. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4743  
Permanent link to this record
 

 
Author van Bussel, L.G.J.; Stehfest, E.; Siebert, S.; Müller, C.; Ewert, F. url  doi
openurl 
  Title Simulation of the phenological development of wheat and maize at the global scale Type Journal Article
  Year 2015 Publication Global Ecology and Biogeography Abbreviated Journal Glob. Ecol. Biogeogr.  
  Volume 24 Issue 9 Pages 1018-1029  
  Keywords Agricultural management; crop calendars; cultivar; variety characteristics; global crop modelling; global harvest dates; phenology; climate-change; winter-wheat; annual crops; photoperiod sensitivity; geographical variation; temperature; responses; adaptation; cultivars; model  
  Abstract AimTo derive location-specific parameters that reflect the geographic differences among cultivars in vernalization requirements, sensitivity to day length (photoperiod) and temperature, which can be used to simulate the phenological development of wheat and maize at the global scale. LocationGlobal. Methods Based on crop calendar observations and literature describing the large-scale patterns of phenological characteristics of cultivars, we developed algorithms to compute location-specific parameters to represent this large-scale pattern. Vernalization requirements were related to the duration and coldness of winter, sensitivity to day length was assumed to be represented by the minimum and maximum day lengths occurring at a location, and sensitivity to temperature was related to temperature conditions during the vegetative development phase of the crop. Results Application of the derived location-specific parameters resulted in high agreement between simulated and observed lengths of the cropping period. Agreement was especially high for wheat, with mean absolute errors of less than 3 weeks. In the main maize cropping regions, cropping periods were over- and underestimated by 0.5-1.5 months. We also found that interannual variability in simulated wheat harvest dates was more realistic when accounting for photoperiod effects. Main conclusions The methodology presented here provides a good basis for modelling the phenological characteristics of cultivars at the global scale. We show that current global patterns of growing season length as described in cropping calendars can be largely reproduced by phenology models if location-specific parameters are derived from temperature and day length indicators. Growing seasons can be modelled more accurately for wheat than for maize, especially in warm regions. Our method for computing parameters for phenology models from temperature and day length offers opportunities to improve the simulation of crop productivity by crop simulation models developed for large spatial areas and for long-term climate impact projections that account for adaptation in the selection of varieties  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1466-822x ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4729  
Permanent link to this record
 

 
Author Conradt, T.; Gornott, C.; Wechsung, F. url  doi
openurl 
  Title Extending and improving regionalized winter wheat and silage maize yield regression models for Germany: Enhancing the predictive skill by panel definition through cluster analysis Type Journal Article
  Year 2016 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 216 Issue Pages 68-81  
  Keywords cluster analysis; crop yield estimation; germany; multivariate regression; silage maize; winter wheat; climate-change; canadian prairies; crop yield; temperature; responses; environments; variability; cultivar; china  
  Abstract Regional agricultural yield assessments allowing for weather effect quantifications are a valuable basis for deriving scenarios of climate change effects and developing adaptation strategies. Assessing weather effects by statistical methods is a classical approach, but for obtaining robust results many details deserve attention and require individual decisions as is demonstrated in this paper. We evaluated regression models for annual yield changes of winter wheat and silage maize in more than 300 German counties and revised them to increase their predictive power. A major effort of this study was, however, aggregating separately estimated time series models (STSM) into panel data models (PDM) based on cluster analyses. The cluster analyses were based on the per-county estimates of STSM parameters. The original STSM formulations (adopted from a parallel study) contained also the non-meteorological input variables acreage and fertilizer price. The models were revised to use only weather variables as estimation basis. These consisted of time aggregates of radiation, precipitation, temperature, and potential evapotranspiration. Altering the input variables generally increased the predictive power of the models as did their clustering into PDM. For each crop, five alternative clusterings were produced by three different methods, and similarities between their spatial structures seem to confirm the existence of objective clusters about common model parameters. Observed smooth transitions of STSM parameter values in space suggest, however, spatial autocorrelation effects that could also be modeled explicitly. Both clustering and autocorrelation approaches can effectively reduce the noise in parameter estimation through targeted aggregation of input data. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium (up) Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4709  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: