|   | 
Details
   web
Records
Author Webber, H.; Ewert, F.; Kimball, B.A.; Siebert, S.; White, J.W.; Wall, G.W.; Ottman, M.J.; Trawally, D.N.A.; Gaiser, T.
Title Simulating canopy temperature for modelling heat stress in cereals Type Journal Article
Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 77 Issue Pages 143-155
Keywords (up) canopy temperature; heat stress; cereals; crop models; profile relationships; crop production; climate-change; spring wheat; field plots; growth; maize; water; yields; variability
Abstract Crop models must be improved to account for the effects of heat stress events on crop yields. To date, most approaches in crop models use air temperature to define heat stress intensity as the cumulative sum of thermal times (TT) above a high temperature threshold during a sensitive period for yield formation. However, observational evidence indicates that crop canopy temperature better explains yield reductions associated with high temperature events than air temperature does. This study presents a canopy level energy balance using Monin ObukhovSimilarity Theory (MOST) with simplifications about the canopy resistance that render it suitable for application in crop models and other models of the plant environment. The model is evaluated for a uniform irrigated wheat canopy in Arizona and rainfed maize in Burkina Faso. No single variable regression relationships for key explanatory variables were found that were consistent across sowing dates to explain the deviation of canopy temperature from air temperature. Finally, thermal times determined with simulated canopy temperatures were able to reproduce thermal times calculated with observed canopy temperature, whereas those determined with air temperatures were not. (C) 2015 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4730
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 117 Issue Pages 1-12
Keywords (up) changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture
Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4489
Permanent link to this record
 

 
Author Eza, U.; Shtiliyanova, A.; Borras, D.; Bellocchi, G.; Carrère, P.; Martin, R.
Title An open platform to assess vulnerabilities to climate change: An application to agricultural systems Type Journal Article
Year 2015 Publication Ecological Informatics Abbreviated Journal Ecological Informatics
Volume 30 Issue Pages 389-396
Keywords (up) climate change; grasslands; modeling platform; vulnerability assessment; pasture simulation-model; software component; solar-radiation; crop production; change impacts; adaptation; indicator; makers
Abstract Numerous climate futures are now available from global climate models. Translation of climate data such as precipitation and temperatures into ecologically meaningful outputs for managers and planners is the next frontier. We describe a model-based open platform to assess vulnerabilities of agricultural systems to climate change on pixel-wise data. The platform includes a simulation modeling engine and is suited to work with NetCDF format of input and output files. In a case study covering a region (Auvergne) in the Massif Central of France, the platform is configured to characterize climate (occurrence of arid conditions in historical and projected climate records), soils and human management, and is then used to assess the vulnerability to climate change of grassland productivity (downscaled to a fine scale). We demonstrate how using climate time series, and process-based simulations vulnerabilities can be defined at fine spatial scales relevant to farmers and land managers, and can be incorporated into management frameworks. (C) 2015 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1574-9541 ISBN Medium Article
Area Expedition Conference
Notes CropM LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4708
Permanent link to this record
 

 
Author Webber, H.; Ewert, F.; Olesen, J.E.; Müller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; Ferrise, R.; Finger, R.; Fodor, N.; Gabaldón-Leal, C.; Gaiser, T.; Jabloun, M.; Kersebaum, K.-C.; Lizaso, J.I.; Lorite, I.J.; Manceau, L.; Moriondo, M.; Nendel, C.; Rodríguez, A.; Ruiz-Ramos, M.; Semenov, M.A.; Siebert, S.; Stella, T.; Stratonovitch, P.; Trombi, G.; Wallach, D.
Title Diverging importance of drought stress for maize and winter wheat in Europe Type Journal Article
Year 2018 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 9 Issue Pages 4249
Keywords (up) Climate-Change Impacts; Air CO2 Enrichment; Food Security; Heat-Stress; Nitrogen Dynamics; Semiarid Environments; Canopy Temperature; Simulation-Model; Crop Production; Elevated CO2
Abstract Understanding the drivers of yield levels under climate change is required to support adaptation planning and respond to changing production risks. This study uses an ensemble of crop models applied on a spatial grid to quantify the contributions of various climatic drivers to past yield variability in grain maize and winter wheat of European cropping systems (1984-2009) and drivers of climate change impacts to 2050. Results reveal that for the current genotypes and mix of irrigated and rainfed production, climate change would lead to yield losses for grain maize and gains for winter wheat. Across Europe, on average heat stress does not increase for either crop in rainfed systems, while drought stress intensifies for maize only. In low-yielding years, drought stress persists as the main driver of losses for both crops, with elevated CO2 offering no yield benefit in these years.
Address 2018-10-25
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5211
Permanent link to this record
 

 
Author Hakala, K.; Jauhiainen, L.; Himanen, S.J.; RÖTter, R.; Salo, T.; Kahiluoto, H.
Title Sensitivity of barley varieties to weather in Finland Type Journal Article
Year 2012 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.
Volume 150 Issue 02 Pages 145-160
Keywords (up) climate-change; winter-wheat; spring wheat; reproductive growth; high-temperatures; changing climate; crop production; increased CO2; yield; tolerance
Abstract Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3-7 weeks after sowing, a temperature change 3-4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (25 degrees C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8596 1469-5146 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4586
Permanent link to this record