toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Webber, H.; Martre, P.; Asseng, S.; Kimball, B.; White, J.; Ottman, M.; Wall, G.W.; De Sanctis, G.; Doltra, J.; Grant, R.; Kassie, B.; Maiorano, A.; Olesen, J.E.; Ripoche, D.; Rezaei, E.E.; Semenov, M.A.; Stratonovitch, P.; Ewert, F. doi  openurl
  Title Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison Type Journal Article
  Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 202 Issue Pages 21-35  
  Keywords Crop model comparison; Canopy temperature; Heat stress; Wheat  
  Abstract Even brief periods of high temperatures occurring around flowering and during grain filling can severely reduce grain yield in cereals. Recently, ecophysiological and crop models have begun to represent such phenomena. Most models use air temperature (Tair) in their heat stress responses despite evidence that crop canopy temperature (Tc) better explains grain yield losses. Tc can deviate significantly from Tair based on climatic factors and the crop water status. The broad objective of this study was to evaluate whether simulation of Tc improves the ability of crop models to simulate heat stress impacts on wheat under irrigated conditions. Nine process-based models, each using one of three broad approaches (empirical, EMP; energy balance assuming neutral atmospheric stability, EBN; and energy balance correcting for the atmospheric stability conditions, EBSC) to simulate Tc, simulated grain yield under a range of temperature conditions. The models varied widely in their ability to reproduce the measured Tc with the commonly used EBN models performing much worse than either EMP or EBSC. Use of Tc to account for heat stress effects did improve simulations compared to using only Tair to a relatively minor extent, but the models that additionally use Tc on various other processes as well did not have better yield simulations. Models that simulated yield well under heat stress had varying skill in simulating Tc. For example, the EBN models had very poor simulations of Tc but performed very well in simulating grain yield. These results highlight the need to more systematically understand and model heat stress events in wheat.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4824  
Permanent link to this record
 

 
Author Porter, J.R.; Christensen, S. url  doi
openurl 
  Title Deconstructing crop processes and models via identities Type Journal Article
  Year 2013 Publication Plant Cell and Environment Abbreviated Journal Plant Cell and Environment  
  Volume 36 Issue 11 Pages 1919-1925  
  Keywords Biomass; Carbon Dioxide/pharmacology; Climate Change; Crops, Agricultural/drug effects/*physiology; *Models, Biological; Kaya-Porter identity; crop models; deconstruction; resource use efficiency  
  Abstract This paper is part review and part opinion piece; it has three parts of increasing novelty and speculation in approach. The first presents an overview of how some of the major crop simulation models approach the issue of simulating the responses of crops to changing climatic and weather variables, mainly atmospheric CO2 concentration and increased and/or varying temperatures. It illustrates an important principle in models of a single cause having alternative effects and vice versa. The second part suggests some features, mostly missing in current crop models, that need to be included in the future, focussing on extreme events such as high temperature or extreme drought. The final opinion part is speculative but novel. It describes an approach to deconstruct resource use efficiencies into their constituent identities or elements based on the Kaya-Porter identity, each of which can be examined for responses to climate and climatic change. We give no promise that the final part is correct’, but we hope it can be a stimulation to thought, hypothesis and experiment, and perhaps a new modelling approach.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-7791 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4799  
Permanent link to this record
 

 
Author Ruane, A.C.; Hudson, N.I.; Asseng, S.; Camarrano, D.; Ewert, F.; Martre, P.; Boote, K.J.; Thorburn, P.J.; Aggarwal, P.K.; Angulo, C.; Basso, B.; Bertuzzi, P.; Biernath, C.; Brisson, N.; Challinor, &rew J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.F.; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, R.C.; Kersebaum, K.C.; Kumar, S.N.; Müller, C.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Osborne, T.M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Rötter, R.P.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stöckle, C.O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Wolf, J. url  doi
openurl 
  Title Multi-wheat-model ensemble responses to interannual climate variability Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 81 Issue Pages 86-101  
  Keywords Crop modeling; Uncertainty; Multi-model ensemble; Wheat; AgMIP; Climate; impacts; Temperature; Precipitation; lnterannual variability; simulation-model; crop model; nitrogen dynamics; winter-wheat; large-area; systems simulation; farming systems; yield response; growth; water  
  Abstract We compare 27 wheat models’ yield responses to interannual climate variability, analyzed at locations in Argentina, Australia, India, and The Netherlands as part of the Agricultural Model Intercomparison and Improvement Project (AgMIP) Wheat Pilot. Each model simulated 1981-2010 grain yield, and we evaluate results against the interannual variability of growing season temperature, precipitation, and solar radiation. The amount of information used for calibration has only a minor effect on most models’ climate response, and even small multi-model ensembles prove beneficial. Wheat model clusters reveal common characteristics of yield response to climate; however models rarely share the same cluster at all four sites indicating substantial independence. Only a weak relationship (R-2 <= 0.24) was found between the models’ sensitivities to interannual temperature variability and their response to long-term warming, suggesting that additional processes differentiate climate change impacts from observed climate variability analogs and motivating continuing analysis and model development efforts. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4769  
Permanent link to this record
 

 
Author Wallach, D.; Thorburn, P.; Asseng, S.; Challinor, A.J.; Ewert, F.; Jones, J.W.; Rötter, R.; Ruane, A. url  doi
openurl 
  Title Estimating model prediction error: Should you treat predictions as fixed or random Type Journal Article
  Year 2016 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 84 Issue Pages 529-539  
  Keywords Crop model; Uncertainty; Prediction error; Parameter uncertainty; Input uncertainty; Model structure uncertainty  
  Abstract Crop models are important tools for impact assessment of climate change, as well as for exploring management options under current climate. It is essential to evaluate the uncertainty associated with predictions of these models. We compare two criteria of prediction error; MSEPfixed, which evaluates mean squared error of prediction for a model with fixed structure, parameters and inputs, and MSEPuncertain(X), which evaluates mean squared error averaged over the distributions of model structure, inputs and parameters. Comparison of model outputs with data can be used to estimate the former. The latter has a squared bias term, which can be estimated using hindcasts, and a model variance term, which can be estimated from a simulation experiment. The separate contributions to MSEPuncertain(X) can be estimated using a random effects ANOVA. It is argued that MSEPuncertain(X) is the more informative uncertainty criterion, because it is specific to each prediction situation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4773  
Permanent link to this record
 

 
Author Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; van Oijen, M.; Constantin, J.; Coucheney, E.; Dechow, R.; Eckersten, H.; Gaiser, T.; Grosz, B.; Haas, E.; Kersebaum, K.-C.; Kiese, R.; Klatt, S.; Lewan, E.; Nendel, C.; Raynal, H.; Sosa, C.; Specka, X.; Teixeira, E.; Wang, E.; Weihermüller, L.; Zhao, G.; Zhao, Z.; Ogle, S.; Ewert, F. doi  openurl
  Title Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 88 Issue Pages 41-52  
  Keywords Net primary production; NPP; Scaling; Extreme events; Crop modelling; Climate Data; aggregation  
  Abstract For spatial crop and agro-systems modelling, there is often a discrepancy between the scale of measured driving data and the target resolution. Spatial data aggregation is often necessary, which can introduce additional uncertainty into the simulation results. Previous studies have shown that climate data aggregation has little effect on simulation of phenological stages, but effects on net primary production (NPP) might still be expected through changing the length of the growing season and the period of grain filling. This study investigates the impact of spatial climate data aggregation on NPP simulation results, applying eleven different models for the same study region (∼34,000 km2), situated in Western Germany. To isolate effects of climate, soil data and management were assumed to be constant over the entire study area and over the entire study period of 29 years. Two crops, winter wheat and silage maize, were tested as monocultures. Compared to the impact of climate data aggregation on yield, the effect on NPP is in a similar range, but is slightly lower, with only small impacts on averages over the entire simulation period and study region. Maximum differences between the five scales in the range of 1–100 km grid cells show changes of 0.4–7.8% and 0.0–4.8% for wheat and maize, respectively, whereas the simulated potential NPP averages of the models show a wide range (1.9–4.2 g C m−2 d−1 and 2.7–6.1 g C m−2 d−1for wheat and maize, respectively). The impact of the spatial aggregation was also tested for shorter time periods, to see if impacts over shorter periods attenuate over longer periods. The results show larger impacts for single years (up to 9.4% for wheat and up to 13.6% for maize). An analysis of extreme weather conditions shows an aggregation effect in vulnerability up to 12.8% and 15.5% between the different resolutions for wheat and maize, respectively. Simulations of NPP averages over larger areas (e.g. regional scale) and longer time periods (several years) are relatively insensitive to climate data.  
  Address 2016-09-13  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Newsletter July Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4775  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: