toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; Neumann, K.; Piontek, F.; Pugh, T.A.; Schmid, E.; Stehfest, E.; Yang, H.; Jones, J.W. doi  openurl
  Title (up) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison Type Journal Article
  Year 2014 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume 111 Issue 9 Pages 3268-3273  
  Keywords Agriculture/*methods/statistics & numerical data; *Climate Change; Computer Simulation; Crops, Agricultural/*growth & development; Forecasting; Geography; *Models, Theoretical; Nitrogen/*analysis; Risk Assessment; Temperature; AgMIP; Isi-mip; agriculture; climate impacts; food security  
  Abstract Here we present the results from an intercomparison of multiple global gridded crop models (GGCMs) within the framework of the Agricultural Model Intercomparison and Improvement Project and the Inter-Sectoral Impacts Model Intercomparison Project. Results indicate strong negative effects of climate change, especially at higher levels of warming and at low latitudes; models that include explicit nitrogen stress project more severe impacts. Across seven GGCMs, five global climate models, and four representative concentration pathways, model agreement on direction of yield changes is found in many major agricultural regions at both low and high latitudes; however, reducing uncertainty in sign of response in mid-latitude regions remains a challenge. Uncertainties related to the representation of carbon dioxide, nitrogen, and high temperature effects demonstrated here show that further research is urgently needed to better understand effects of climate change on agricultural production and to devise targeted adaptation strategies.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1091-6490 (Electronic) 0027-8424 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4801  
Permanent link to this record
 

 
Author Pilbeam, D.J. url  doi
openurl 
  Title (up) Breeding crops for improved mineral nutrition under climate change conditions Type Journal Article
  Year 2015 Publication Journal of Experimental Botany Abbreviated Journal J. Experim. Bot.  
  Volume 66 Issue 12 Pages 3511-3421  
  Keywords Breeding/*methods; *Climate Change; Crops, Agricultural/*growth & development; Environment; Minerals/*metabolism; *Nutritional Physiological Phenomena; Micronutrient; nitrogen; nutrient availability; nutrient use efficiency; phosphorus; quantitative trait loci (QTLs)  
  Abstract Improvements in understanding how climate change may influence chemical and physical processes in soils, how this may affect nutrient availability, and how plants may respond to changed availability of nutrients will influence crop breeding programmes. The effects of increased atmospheric CO2 and warmer temperatures, both individually and combined, on soil microbial activity, including mycorrhizas and N-fixing organisms, are evaluated, together with their implications for nutrient availability. Potential changes to plant growth, and the combined effects of soil and plant changes on nutrient uptake, are discussed. The organization of research on the efficient use of macro- and micronutrients by crops under climate change conditions is outlined, including analysis of QTLs for nutrient efficiency. Suggestions for how the information gained can be used in plant breeding programmes are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1460-2431; 0022-0957 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4575  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. url  doi
openurl 
  Title (up) Can crop-climate models be accurate and precise? A case study for wheat production in Denmark Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 202 Issue Pages 51-60  
  Keywords Uncertainty; Model intercomparison; Bayesian approach; Climate change; Wheat; Denmark; uncertainty analysis; simulation-models; bayesian-approach; change; impact; yields; variability; projections; scale; calibration; framework  
  Abstract Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4572  
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Janes, V.; Sandars, D. doi  openurl
  Title (up) Can we be certain about future land use change in Europe? A multi-scenario, integrated-assessment analysis Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 151 Issue Pages 126-135  
  Keywords Climate change, Socio-economic change, Impacts, Integrated assessment, Uncertainty; Climate-Change Impacts; Water-Based Sectors; North-West England; Socioeconomic Change; Change Vulnerability; East-Anglia; Adaptation; Policy; Uncertainties; Agriculture  
  Abstract The global land system is facing unprecedented pressures from growing human populations and climatic change. Understanding the effects these pressures may have is necessary to designing land management strategies that ensure food security, ecosystem service provision and successful climate mitigation and adaptation. However, the number of complex, interacting effects involved makes any complete understanding very difficult to achieve. Nevertheless, the recent development of integrated modelling frameworks allows for the exploration of the co-development of human and natural systems under scenarios of global change, potentially illuminating the main drivers and processes in future land system change. Here, we use one such integrated modelling framework (the CLIMSAVE Integrated Assessment Platform) to investigate the range of projected outcomes in the European land system across climatic and socio-economic scenarios for the 2050s. We find substantial consistency in locations and types of change even under the most divergent conditions, with results suggesting that climate change alone will lead to a contraction in the agricultural and forest area within Europe, particularly in southern Europe. This is partly offset by the introduction of socioeconomic changes that change both the demand for agricultural production, through changing food demand and net imports, and the efficiency of agricultural production. Simulated extensification and abandonment in the Mediterranean region is driven by future decreases in the relative profitability of the agricultural sector in southern Europe, owing to decreased productivity as a consequence of increased heat and drought stress and reduced irrigation water availability. The very low likelihood (<33% probability) that current land use proportions in many parts of Europe will remain unchanged suggests that future policy should seek to promote and support the multifunctional role of agriculture and forests in different European regions, rather than focusing on increased productivity as a route to agricultural and forestry viability.  
  Address 2017-02-23  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LiveM, TradeM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4937  
Permanent link to this record
 

 
Author Zhang, S.; Tao, F.; Zhang, Z. url  doi
openurl 
  Title (up) Changes in extreme temperatures and their impacts on rice yields in southern China from 1981 to 2009 Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 189 Issue Pages 43-50  
  Keywords Adaptation; Agriculture; Climate change; Crop; Extreme climate; Impacts; climate-change; spikelet sterility; heat-stress; crop yields; water-use; vulnerability; responses; period; CO2  
  Abstract Extreme temperature impacts on field crop are of key concern and increasingly assessed, however the studies have seldom taken into account the automatic adaptations such as shifts in planting dates, phenological dynamics and cultivars. In this present study, trial data on rice phenology, agro-meteorological hazards and yields during 1981-2009 at 120 national agro-meteorological experiment stations were used. The detailed data provide us a unique opportunity to quantify extreme temperature impacts on rice yield more precisely and in a setting with automatic adaptations. In this study, changes in an accumulated thermal index (growing degree day, GDD), a high temperature stress index (>35 degrees C high temperature degree day, HDD), and a cold stress index (<20 degrees C cold degree day, CDD), were firstly investigated. Then, their impacts on rice yield were further quantified by a multivariable analysis. The results showed that in the past three decades, for early rice, late rice and single rice in western part, and single rice in other parts of the middle and lower reaches of Yangtze River, respectively, rice yield increased by 5.83%, 1.71%, 8.73% and 3.49% due to increase in GDD. Rice yield was generally more sensitive to high temperature stress than to cold temperature stress. It decreased by 0.14%, 0.32%, 0.34% and 0.14% due to increase in HDD, by contrast increased by 1.61%, 0.26%, 0.16% and 0.01% due to decrease in CDD, respectively. In addition, decreases in solar radiation reduced rice yield by 0.96%, 0.13%, 9.34% and 6.02%. In the past three decades, the positive impacts of increase in GDD and the negative impacts of decrease in solar radiation played dominant roles in determining overall climate impacts on yield. However, with climate warming in future, the positive impacts of increase in GDD and decrease in CDD will be offset by increase in HDD, resulting in overall negative climate impacts on yield. Our findings highlight the risk of heat stress on rice yield and the importance of developing integrated adaptation strategies to cope with heat stress.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4731  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: