toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Persson, T.; Höglind, M.; Gustavsson, A.-M.; Halling, M.; Jauhiainen, L.; Niemeläinen, O.; Thorvaldsson, G.; Virkajärvi, P. doi  openurl
  Title Evaluation of the LINGRA timothy model under Nordic conditions Type Journal Article
  Year 2014 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 161 Issue Pages 87-97  
  Keywords crop model; forage grass; perennial ley; simulation model; nutritive-value; climate-change; systems simulation; growth; dynamics; crop; performance; regrowth; calibration; pastures  
  Abstract Simulation models are frequently applied to determine the production potential of forage grasses under various scenarios, including climate change. Thorough calibrations and evaluations of forage grass models can help improve their applicability. This study evaluated the ability of the Light Interception and Utilization Simulator-GRAss (LINGRA) model to predict biomass yield of timothy (Phleum pratense L. cv. Grindstad) in the Nordic countries. Variety trial data for the first and second year after establishment were obtained for seven locations: Jokioinen, Finland (60 degrees 48 ‘ N; 23 degrees 29 ‘ E), Maaninka, Finland (63 degrees 09 ‘ N; 27 degrees 18 ‘ E), Korpa, Iceland (64 degrees 09 ‘ N; 21 degrees 45 ‘ W), Srheim, Norway (58 degrees 41 ‘ N; 5 degrees 39 ‘ E), Lillerud, Sweden (59 degrees 24’ N; 13 degrees 16 ‘ E), Ostersund, Sweden (63 degrees 15 ‘ N; 14 degrees 34 ‘ E) and Ulna Sweden (63 degrees 49 ‘ N; 20 degrees 13 ‘ E) from 1992 to 2012. Two calibrations of the LINGRA model were carried out using Bayesian techniques. In the first of these (SRrheim calibration), data on biomass yield and underlying variables obtained from independent field trials at Srheim were used. In the second (Nordic calibration), biomass data from the other locations were used as well. The model was validated against the remaining set of biomass yields from all locations not included in the Nordic calibration. The observed total seasonal yield the first and second year after establishment was 913 and 991 g DM m(-2) respectively on average across the locations. The corresponding average simulated yield after the Srheim calibration was 1044 (root mean square error (RMSE) 258) and 1112 g DM m(-2) (RMSE 312), respectively. After the Nordic calibration, the simulated average total seasonal yield was 863 (RMSE 242) the first year and 927 g DM m(-2) (RMSE 271) the second year after establishment. The differences between the observed and simulated first cut yield followed the same patterns, whereas the prediction accuracy for second cut yield did not differ substantially between the calibration approaches.Using the parameter set from the Nordic region decreased the model predictability at Srheim compared with only using model parameters derived from this location. These results show that using biomass data from several locations, instead of only one specific location, in the calibration of the LINGRA model improved the overall prediction accuracy of first cut dry matter yield and total seasonal dry matter yield across an environmentally heterogeneous region. To further analyse the usefulness of including multi-site data in forage grass model calibrations, other forage grass models could be evaluated against the same dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4634  
Permanent link to this record
 

 
Author (up) Pulina, A.; Lai, R.; Salis, L.; Seddaiu, G.; Roggero, P.P.; Bellocchi, G. url  doi
openurl 
  Title Modelling pasture production and soil temperature, water and carbon fluxes in Mediterranean grassland systems with the Pasture Simulation Model Type Journal Article
  Year 2018 Publication Grass and Forage Science Abbreviated Journal Grass Forage Sci.  
  Volume 73 Issue 2 Pages 272-283  
  Keywords grassland production; Mediterranean pastures; model calibration; PaSim; sheep grazing systems; soil respiration  
  Abstract Grasslands play important roles in agricultural production and provide a range of ecosystem services. Modelling can be a valuable adjunct to experimental research in order to improve the knowledge and assess the impact of management practices in grassland systems. In this study, the PaSim model was assessed for its ability to simulate plant biomass production, soil temperature, water content, and total and heterotrophic soil respiration in Mediterranean grasslands. The study site was the extensively managed sheep grazing system at the Berchidda‐Monti Observatory (Sardinia, Italy), from which two data sets were derived for model calibration and validation respectively. A new model parameterization was derived for Mediterranean conditions from a set of eco‐physiological parameters. With the exception of heterotrophic respiration (Rh), for which modelling efficiency (EF) values were negative, the model outputs were in agreement with observations (e.g., EF ranging from ~0.2 for total soil respiration to ~0.7 for soil temperature). These results support the effectiveness of PaSim to simulate C cycle components in Mediterranean grasslands. The study also highlights the need of further model development to provide better representation of the seasonal dynamics of Mediterranean annual species‐rich grasslands and associated peculiar Rh features, for which the modelling is only implicitly being undertaken by the current PaSim release.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area LiveM Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4973  
Permanent link to this record
 

 
Author (up) Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; Sonnenborg, T.O.; Trolle, D.; Willems, P.; Christensen, J.H. url  doi
openurl 
  Title A framework for testing the ability of models to project climate change and its impacts Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 122 Issue 1-2 Pages 271-282  
  Keywords simulation-models; shallow lakes; predictions; calibration; ensembles; terminology; uncertainty; temperature; adaptation; validation  
  Abstract Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4688  
Permanent link to this record
 

 
Author (up) Sanna, M.; Bellocchi, G.; Fumagalli, M.; Acutis, M. url  doi
openurl 
  Title A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 73 Issue Pages 286-304  
  Keywords model evaluation; performance indicators; stable correlation; solar-radiation; simulation-model; environmental-models; statistical-methods; crop nitrogen; validation; rice; uncertainty; calibration; software  
  Abstract The use of a variety of metrics is advocated to assess model performance but correlated metrics may convey the same information, thus leading to redundancy. Starting from this assumption, a method was developed for selecting, from among a collection of performance indicators, one or more subsets providing the same information as the entire set. The method, based on the definition of “stable correlation”, was applied to 23 performance indicators of agrometeorological models, calculated on large sets of simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Two subsets were determined: {Squared Bias, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index, Modified Modelling Efficiency}, {Persistence Model Efficiency, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index}. The method needs corroboration but is statistically founded and can support the implementation of standardized evaluation tools. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4503  
Permanent link to this record
 

 
Author (up) Toscano, P.; Ranieri, R.; Matese, A.; Vaccari, F.P.; Gioli, B.; Zaldei, A.; Silvestri, M.; Ronchi, C.; La Cava, P.; Porter, J.R.; Miglietta, F. url  doi
openurl 
  Title Durum wheat modeling: The Delphi system, 11 years of observations in Italy Type Journal Article
  Year 2012 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 43 Issue Pages 108-118  
  Keywords durum wheat; crop modeling; yield forecasting; calibration; scenarios; decision-support-system; crop simulation-model; ceres-wheat; mediterranean environment; winter-wheat; scaling-up; variability; quality; growth; water  
  Abstract ► Delphi system, based on AFRCWHEAT2 model, for durum wheat forecast. ► AFRCWHEAT2 model was calibrated and validated for three years. ► A scenario approach was applied to simulation of durum wheat yield. ► Operational mode for eleven years in rainfed and water limiting conditions. ► Accurate forecast as an useful planning tool. Crop models are frequently used in ecology, agronomy and environmental sciences for simulating crop and environmental variables at a discrete time step. The aim of this work was to test the predictive capacity of the Delphi system, calibrated and determined for each pedoclimatic factor affecting durum wheat during phenological development. at regional scale. We present an innovative system capable of predicting spatial yield variation and temporal yield fluctuation in long-term analysis, that are the main purposes of regional crop simulation study. The Delphi system was applied to simulate growth and yield of durum wheat in the major Italian supply basins (Basilicata, Capitanata, Marche, Tuscany). The model was validated and evaluated for three years (1995-1997) at 11 experimental fields and then used in operational mode for eleven years (1999-2009), showing an excellent/good accuracy in predicting grain yield even before maturity for a wide range of growing conditions in the Mediterranean climate, governed by different annual weather patterns. The results were evaluated on the basis of regression and normalized root mean squared error with known crop yield statistics at regional level. (c) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4596  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: