toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Tao, F.; Palosuo, T.; Roetter, R.P.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Cammarano, D.; Specka, X.; Nendel, C.; Srivastava, A.K.; Ewert, F.; Padovan, G.; Ferrise, R.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Dibari, C.; Schulman, A.H. doi  openurl
  Title Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 281 Issue Pages 107851  
  Keywords agriculture; climate change; crop growth simulation; impact; model; improvement; uncertainty; air CO2 enrichment; elevated CO2; wheat growth; nitrogen dynamics; simulation-models; field experiment; atmospheric CO2; rice phenology; temperature; uncertainty  
  Abstract Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5232  
Permanent link to this record
 

 
Author (up) Trnka, M.; Feng, S.; Semenov, M.A.; Olesen, J.E.; Kersebaum, K.C.; Roetter, R.P.; Semeradova, D.; Klem, K.; Huang, W.; Ruiz-Ramos, M.; Hlavinka, P.; Meitner, J.; Balek, J.; Havlik, P.; Buntgen, U. doi  openurl
  Title Mitigation efforts will not fully alleviate the increase in water scarcity occurrence probability in wheat-producing areas Type Journal Article
  Year 2019 Publication Science Advances Abbreviated Journal Sci. Adv.  
  Volume 5 Issue 9 Pages eaau2406  
  Keywords climate-change impacts; sub-saharan africa; atmospheric co2; crop; yields; drought; agriculture; variability; irrigation; adaptation; carbon  
  Abstract Global warming is expected to increase the frequency and intensity of severe water scarcity (SWS) events, which negatively affect rain-fed crops such as wheat, a key source of calories and protein for humans. Here, we develop a method to simultaneously quantify SWS over the world’s entire wheat-growing area and calculate the probabilities of multiple/sequential SWS events for baseline and future climates. Our projections show that, without climate change mitigation (representative concentration pathway 8.5), up to 60% of the current wheat-growing area will face simultaneous SWS events by the end of this century, compared to 15% today. Climate change stabilization in line with the Paris Agreement would substantially reduce the negative effects, but they would still double between 2041 and 2070 compared to current conditions. Future assessments of production shocks in food security should explicitly include the risk of severe, prolonged, and near- simultaneous droughts across key world wheat-producing areas.  
  Address 2020-02-14  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2375-2548 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5227  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: