toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mandryk, M.; Reidsma, P.; van Ittersum, M.K. url  doi
openurl 
  Title Scenarios of long-term farm structural change for application in climate change impact assessment Type Journal Article
  Year 2012 Publication Landscape Ecology Abbreviated Journal Landscape Ecol.  
  Volume 27 Issue 4 Pages 509-527  
  Keywords agriculture; adaptation; climate change; farm structural change; flevoland; agricultural land-use; future; policy; adaptation; diversification; vulnerability; productivity; consequences; variability; performance  
  Abstract Towards 2050, climate change is one of the possible drivers that will change the farming landscape, but market, policy and technological development may be at least equally important. In the last decade, many studies assessed impacts of climate change and specific adaptation strategies. However, adaptation to climate change must be considered in the context of other driving forces that will cause farms of the future to look differently from today’s farms. In this paper we use a historical analysis of the influence of different drivers on farm structure, complemented with literature and stakeholder consultations, to assess future structural change of farms in a region under different plausible futures. As climate change is one of the drivers considered, this study thus puts climate change impact and adaptation into the context of other drivers. The province of Flevoland in the north of The Netherlands was used as case study, with arable farming as the main activity. To account for the heterogeneity of farms and to indicate possible directions of farm structural change, a farm typology was developed. Trends in past developments in farm types were analyzed with data from the Dutch agricultural census. The historical analysis allowed to detect the relative importance of driving forces that contributed to farm structural changes. Simultaneously, scenario assumptions about changes in these driving forces elaborated at global and European levels, were downscaled for Flevoland, to regional and farm type level in order to project impacts of drivers on farm structural change towards 2050. Input from stakeholders was also used to detail the downscaled scenarios and to derive historical and future relationships between drivers and farm structural change. These downscaled scenarios and future driver-farm structural change relationships were used to derive quantitative estimations of farm structural change at regional and farm type level in Flevoland. In addition, stakeholder input was used to also derive images of future farms in Flevoland. The estimated farm structural changes differed substantially between the two scenarios. Our estimations of farm structural change provide a proper context for assessing impacts of and adaptation to climate change in 2050 at crop and farm level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-2973 1572-9761 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4477  
Permanent link to this record
 

 
Author Ventrella, D.; Charfeddine, M.; Moriondo, M.; Rinaldi, M.; Bindi, M. url  doi
openurl 
  Title Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: irrigation and nitrogen fertilization Type Journal Article
  Year 2012 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 12 Issue 3 Pages 407-419  
  Keywords Modelling; Climate change; Agronomic adaptation strategies; Yield; Tomato; Winter durum wheat; air co2 enrichment; change scenarios; cropping systems; change impacts; simulation; agriculture; variability; increase; model; responses; Environmental Sciences & Ecology  
  Abstract Agricultural crops are affected by climate change due to the relationship between crop development, growth, yield, CO2 atmospheric concentration and climate conditions. In particular, the further reduction in existing limited water resources combined with an increase in temperature may result in higher impacts on agricultural crops in the Mediterranean area than in other regions. In this study, the cropping system models CERES-Wheat and CROPGRO-Tomato of the Decision Support System for Agrotechnology Transfer (DSSAT) were used to analyse the response of winter durum wheat (Triticum aestivum L.) and tomato (Lycopersicon esculentum Mill.) crops to climate change, irrigation and nitrogen fertilizer managements in one of most productive areas of Italy (i.e. Capitanata, Puglia). For this analysis, three climatic datasets were used: (1) a single dataset (50 km x 50 km) provided by the JRC European centre for the period 1975-2005; two datasets from HadCM3 for the IPCC A2 GHG scenario for time slices with +2A degrees C (centred over 2030-2060) and +5A degrees C (centred over 2070-2099), respectively. All three datasets were used to generate synthetic climate series using a weather simulator (model LARS-WG). Adaptation strategies, such as irrigation and N fertilizer managements, have been investigated to either avoid or at least reduce the negative impacts induced by climate change impacts for both crops. Warmer temperatures were primarily shown to accelerate wheat and tomato phenology, thereby resulting in decreased total dry matter accumulation for both tomato and wheat under the +5A degrees C future climate scenario. Under the +2A degrees C scenario, dry matter accumulation and resulting yield were also reduced for tomato, whereas no negative yield effects were observed for winter durum wheat. In general, limiting the global mean temperature change of 2A degrees C, the application of adaptation strategies (irrigation and nitrogen fertilization) showed a positive effect in minimizing the negative impacts of climate change on productivity of tomato cultivated in southern Italy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4480  
Permanent link to this record
 

 
Author Bodirsky, B.L.; Müller, C. url  doi
openurl 
  Title Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 11 Pages 111005  
  Keywords nitrogen use efficiency; nitrogen; fertilizer; nitrogen pollution; agriculture; yields; mitigation; framework  
  Abstract Historic increases in agricultural production came at the expense of substantial environmental burden through nitrogen pollution. Lassaletta et al (2014 Environ. Res. Lett. 9 105011) examine the historic relationship of crop yields and nitrogen fertilizer inputs globally and find a simple and robust relationship of declining nitrogen use efficiency with increasing nitrogen inputs. This general relationship helps to understand the dilemma between increased agricultural production and nitrogen pollution and allows identifying pathways towards more sustainable agricultural production and necessary associated policies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4514  
Permanent link to this record
 

 
Author Waha, K.; Müller, C.; Rolinski, S. url  doi
openurl 
  Title Separate and combined effects of temperature and precipitation change on maize yields in sub-Saharan Africa for mid- to late-21st century Type Journal Article
  Year 2013 Publication Global and Planetary Change Abbreviated Journal Global and Planetary Change  
  Volume 106 Issue Pages 1-12  
  Keywords climate change; wet season; water stress; temperature stress; hierarchical cluster analysis; global vegetation model; climate-change; southern africa; east-africa; part i; food; heat; agriculture; variability; impacts  
  Abstract Maize (Zea mays L) is one of the most important food crops and very common in all parts of sub-Saharan Africa. In 2010 53 million tons of maize were produced in sub-Saharan Africa on about one third of the total harvested cropland area (similar to 33 million ha). Our aim is to identify the limiting agroclimatic variable for maize growth and development in sub-Saharan Africa by analyzing the separated and combined effects of temperature and precipitation. Under changing climate, both climate variables are projected to change severely, and their impacts on crop yields are frequently assessed using process-based crop models. However it is often unclear which agroclimatic variable will have the strongest influence on crop growth and development under climate change and previous studies disagree over this question. We create synthetic climate data in order to study the effect of large changes in the length of the wet season and the amount of precipitation during the wet season both separately and in combination with changes in temperature. The dynamic global vegetation model for managed land LPJmL is used to simulate maize yields under current and future climatic conditions for the two 10-year periods 2056-2065 and 2081-2090 for three climate scenarios for the A1b emission scenario but without considering the beneficial CO2 fertilization effect. The importance of temperature and precipitation effects on maize yields varies spatially and we identify four groups of crop yield changes: regions with strong negative effects resulting from climate change (<-33% yield change), regions with moderate (-33% to -10% yield change) or slight negative effects (-10% to +6% yield change), and regions with positive effects arising from climate change mainly in currently temperature-limited high altitudes (>+6% yield change). In the first three groups temperature increases lead to maize yield reductions of 3 to 20%, with the exception of mountainous and thus cooler regions in South and East Africa. A reduction of the wet season precipitation causes decreases in maize yield of at least 30% and prevails over the effect of increased temperatures in southern parts of Mozambique and Zambia, the Sahel and parts of eastern Africa in the two projection periods. This knowledge about the limiting abiotic stress factor in each region will help to prioritize future research needs in modeling of agricultural systems as well as in drought and heat stress breeding programs and to identify adaption options in agricultural development projects. On the other hand the study enhances the understanding of temperature and water stress effects on crop yields in a global vegetation model in order to identify future research and model development needs. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-8181 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4508  
Permanent link to this record
 

 
Author Dietrich, J.P.; Popp, A.; Lotze-Campen, H. url  doi
openurl 
  Title Reducing the loss of information and gaining accuracy with clustering methods in a global land-use model Type Journal Article
  Year 2013 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 263 Issue Pages 233-243  
  Keywords aggregation; downscaling; clustering; information conservation; land use model; scale; scales; agriculture; simulation; dynamics; pattern  
  Abstract Global land-use models have to deal with processes on several spatial scales, ranging from the global scale down to the farm level. The increasing complexity of modern land-use models combined with the problem of limited computational resources represents a challenge to modelers. One solution of this problem is to perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately this type of aggregation flattens many regional differences and produces a homogenized map of the world. In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces the loss of information due to aggregation by choosing an appropriate aggregation pattern. We investigate different clustering methods, examining their quality in terms of information conservation. Our results indicate that clustering is always a good choice and preferable compared to grid-based aggregation. Although all the clustering methods we tested delivered a higher degree of information conservation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the best results for the whole range of numbers of clusters tested. (C) 2013 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (up) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4488  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: