toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Waha, K.; Müller, C.; Bondeau, A.; Dietrich, J.P.; Kurukulasuriya, P.; Heinke, J.; Lotze-Campen, H. url  doi
openurl 
  Title Adaptation to climate change through the choice of cropping system and sowing date in sub-Saharan Africa Type Journal Article
  Year 2013 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 23 Issue 1 Pages 130-143  
  Keywords multiple cropping; sequential cropping systems; crop modelling; agricultural management; adaptation options; global vegetation model; future food-production; rainy-season; west-africa; agriculture; yield; maize; soil; variability; heat  
  Abstract Multiple cropping systems provide more harvest security for farmers, allow for crop intensification and furthermore influence ground cover, soil erosion, albedo, soil chemical properties, pest infestation and the carbon sequestration potential. We identify the traditional sequential cropping systems in ten sub-Saharan African countries from a survey dataset of more than 8600 households. We find that at least one sequential cropping system is traditionally used in 35% of all administrative units in the dataset, mainly including maize or groundnuts. We compare six different management scenarios and test their susceptibility as adaptation measure to climate change using the dynamic global vegetation model for managed land LPJmL. Aggregated mean crop yields in sub-Saharan Africa decrease by 6-24% due to climate change depending on the climate scenario and the management strategy. As an exception, some traditional sequential cropping systems in Kenya and South Africa gain by at least 25%. The crop yield decrease is typically weakest in sequential cropping systems and if farmers adapt the sowing date to changing climatic conditions. Crop calorific yields in single cropping systems only reach 40-55% of crop calorific yields obtained in sequential cropping systems at the end of the 21st century. The farmers’ choice of adequate crops, cropping systems and sowing dates can be an important adaptation strategy to climate change and these management options should be considered in climate change impact studies on agriculture. (C) 2012 Elsevier Ltd. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4823  
Permanent link to this record
 

 
Author Schaap, B.F.; Reidsma, P.; Verhagen, J.; Wolf, J.; van Ittersum, M.K. url  doi
openurl 
  Title Participatory design of farm level adaptation to climate risks in an arable region in The Netherlands Type Journal Article
  Year 2013 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 48 Issue Pages 30-42  
  Keywords adaptation; climate change; impact; crop production; wheat; onion; potato; sugar beet; crop production; change impacts; agriculture; variability; events; europe; model  
  Abstract In the arable farming region Flevoland in The Netherlands climate change, including extreme events and pests and diseases, will likely pose risks to a variety of crops including high value crops such as seed potato, ware potato and seed onion. A well designed adaptation strategy at the farm level can reduce risks for farmers in Flevoland. Currently, most of the impact assessments rely heavily on (modelling) techniques that cannot take into account extreme events and pests and diseases and cannot address all crops, and are thus not suited as input for a comprehensive adaptation strategy at the farm level. To identify major climate risks and impacts and develop an adaptation measure portfolio for the most relevant risks we complemented crop growth modelling with a semi-quantitative and participatory approach, the Agro Climatic Calendar (ACC), A cost-benefit analysis and stakeholder workshops were used to identify robust adaptation measures and design an adaptation strategy for contrasting scenarios in 2050. For Flevoland, potential yields of main crops were projected to increase, but five main climate risks were identified, and these are likely to offset the positive impacts. Optimized adaptation strategies differ per scenario (frequency of occurrence of climate risks) and per farm (difference in economic loss). When impacts are high (in the +2 degrees C and A1 SRES scenario) drip irrigation was identified as the best adaptation measure against the main climate risk heat wave that causes second-growth in seed and ware potato. When impacts are smaller (the +1 degrees C and B2 SRES scenario), other options including no adaptation are more cost-effective. Our study shows that with relatively simple techniques such as the ACC combined with a stakeholder process, adaptation strategies can be designed for whole farming systems. Important benefits of this approach compared to modelling techniques are that all crops can be included, all climate factors can be addressed, and a large range of adaptation measures can be explored. This enhances that the identified adaptation strategies are recognizable and relevant for stakeholders. (C) 2013 Elsevier B.V. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4809  
Permanent link to this record
 

 
Author Mandryk, M.; Reidsma, P.; Kanellopoulos, A.; Groot, J.C.J.; van Ittersum, M.K. url  doi
openurl 
  Title The role of farmers’ objectives in current farm practices and adaptation preferences: a case study in Flevoland, the Netherlands Type Journal Article
  Year 2014 Publication Regional Environmental Change Abbreviated Journal Reg Environ Change  
  Volume 14 Issue 4 Pages 1463-1478  
  Keywords multi-criteria decision-making; multi-objective optimization; agriculture; arable farm; vegetable farms; climate-change; south uruguay; land-use; design; agriculture; model; management; options; systems  
  Abstract The diversity in farmers’ objectives and responses to external drivers is usually not considered in integrated assessment studies that investigate impacts and adaptation to climate and socio-economic change. Here, we present an approach to assess how farmers’ stated objectives relate to their currently implemented practices and to preferred adaptation options, and we discuss what this implies for assessments of future changes. We based our approach on a combination of multi-criteria decision-making methods. We consistently assessed the importance of farmers’ objectives and adaptation preferences from what farmers say (based on interviews), from what farmers actually do (by analysing current farm performance) and from what farmers want (through a selected alternative farm plan). Our study was performed for six arable farms in Flevoland, a province in the Netherlands. Based on interviews with farmers, we reduced the long list of possible objectives to the most important ones. The objectives we assessed included maximization of economic result and soil organic matter, and minimization of gross margin variance, working hours and nitrogen balance. In our sample, farmers’ stated preferences in objectives were often not fully reflected in realized farming practices. Adaptation preferences of farmers largely resembled their current performance, but generally involved a trend towards stated preferences. Our results suggest that in Flevoland, although farmers do have more objectives, in practical decision-making they focus on economic result maximization, while for strategic decision-making they account for objectives influencing long-term performance and indicators associated with sustainability, in this case soil organic matter.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 1436-378x ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4794  
Permanent link to this record
 

 
Author Perego, A.; Sanna, M.; Giussani, A.; Chiodini, M.E.; Fumagalli, M.; Pilu, S.R.; Bindi, M.; Moriondo, M.; Acutis, M. url  doi
openurl 
  Title Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy) Type Journal Article
  Year 2014 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 499 Issue Pages 497-509  
  Keywords Agriculture/*methods/standards; *Climate Change; Droughts; Italy; Nitrogen/analysis; Soil; Water Supply/statistics & numerical data; Zea mays/*growth & development/standards; Climate change; Crop model; Maize; Water use adaptation  
  Abstract The expected climate change will affect the maize yields in view of air temperature increase and scarce water availability. The application of biophysical models offers the chance to design a drought-resistant ideotype and to assist plant breeders and agronomists in the assessment of its suitability in future scenarios. The aim of the present work was to perform a model-based estimation of the yields of two hybrids, current vs ideotype, under future climate scenarios (2030-2060 and 2070-2100) in Lombardy (northern Italy), testing two options of irrigation (small amount at fixed dates vs optimal water supply), nitrogen (N) fertilization (300 vs 400 kg N ha(-1)), and crop cycle durations (current vs extended). For the designing of the ideotype we set several parameters of the ARMOSA process-based crop model: the root elongation rate and maximum depth, stomatal resistance, four stage-specific crop coefficients for the actual transpiration estimation, and drought tolerance factor. The work findings indicated that the current hybrid ensures good production only with high irrigation amount (245-565 mm y(-1)). With respect to the current hybrid, the ideotype will require less irrigation water (-13%, p<0.01) and it resulted in significantly higher yield under water stress condition (+15%, p<0.01) and optimal water supply (+2%, p<0.05). The elongated cycle has a positive effect on yield under any combination of options. Moreover, higher yields projected for the ideotype implicate more crop residues to be incorporated into the soil, which are positively correlated with the SOC sequestration and negatively with N leaching. The crop N uptake is expected to be adequate in view of higher rate of soil mineralization; the N fertilization rate of 400 kg N ha(-1) will involve significant increasing of grain yield, and it is expected to involve a higher rate of SOC sequestration.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4798  
Permanent link to this record
 

 
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 4 Pages 045004  
  Keywords climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semiquantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4800  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: