|   | 
Details
   web
Records
Author Rusu, T.; Moraru, P.I.
Title Impact of climate change on crop land and technological recommendations for the main crops in Transylvanian Plain, Romania Type Journal Article
Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research
Volume 32 Issue Pages (down) 103-111
Keywords climate change monitoring; temperature regimes; soil moisture; adaptation technologies; transylvanian plain; agriculture; france; precipitation; circulation; adaptation; models
Abstract The Transylvanian Plain (TP) is an important agricultural production area of Romania that is included among the areas with the lowest potential of adapting to climate changes in Europe. Thermal and hydric regime monitoring is necessary to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data regarding ground temperature at 3 depths (10, 30, 50 cm), humidity at a depth of 10 cm, air temperature (at 1 m) and precipitation. For agricultural crops, the periods of drought and extreme temperatures require specific measures of adaptation to climate changes. During the growing season of crops in the spring (April – October) in the south-eastern, southern, and eastern escarpments, precipitation decreased by 43.8 mm, the air temperature increased by 0.37 degrees C, and the ground temperature increased by 1.91 degrees C at a depth of 10 cm, 2.22 degrees C at a depth of 20 cm and 2.43 degrees C at a depth of 30 cm compared with values recorded for the northern, north-western or western escarpments. Water requirements were ensured within an optimal time frame for 58.8-62.1% of the spring row crop growth period, with irrigation being necessary to guarantee the optimum production potential. The biologically active temperature recorded in the TP demonstrates the need to renew the division of the crop areas reported in the literature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1222-4227 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4650
Permanent link to this record
 

 
Author Camacho, C.; Pérez-Barahona, A.
Title Land use dynamics and the environment Type Journal Article
Year 2015 Publication Journal of Economic Dynamics and Control Abbreviated Journal Journal of Economic Dynamics and Control
Volume 52 Issue Pages (down) 96-118
Keywords land use; spatial dynamics; pollution; climate-change; air-pollution; agriculture; instability; allocation; principle; pattern; quality; health; impact
Abstract This paper builds a benchmark framework to study optimal land use, encompassing land use activities and environmental degradation. We focus on the spatial externalities of land use as drivers of spatial patterns: land is immobile by nature, but local actions affect the whole space since pollution flows across locations resulting in both local and global damages. We prove that the decision maker problem has a solution, and characterize the corresponding social optimum trajectories by means of the Pontryagin conditions. We also show that the existence and uniqueness of time-invariant solutions are not in general guaranteed. Finally, a global dynamic algorithm is proposed in order to illustrate the spatial-dynamic richness of the model. We find that our simple set-up already reproduces a great variety of spatial patterns related to the interaction between land use activities and the environment. In particular, abatement technology turns out to play a central role as pollution stabilizer, allowing the economy to reach a time-invariant equilibrium that can be spatially heterogeneous. (C) 2014 Elsevier B.V. All rights reserved.
Address 2015-10-09
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-1889 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4698
Permanent link to this record
 

 
Author Caubel, J.; García de Cortázar-Atauri, I.; Launay, M.; de Noblet-Ducoudré, N.; Huard, F.; Bertuzzi, P.; Graux, A.-I.
Title Broadening the scope for ecoclimatic indicators to assess crop climate suitability according to ecophysiological, technical and quality criteria Type Journal Article
Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology
Volume 207 Issue Pages (down) 94-106
Keywords Climate suitability; Indicator-based method of evaluation; Ecoclimatic; indicator; Crop phenology; Crop ecophysiology; Crop management; Yield; quality; high-temperature; heat-stress; change scenarios; maize; wheat; growth; yield; agriculture; systems; time
Abstract The cultivation of crops in a given area is highly dependent of climatic conditions. Assessment of how the climate is favorable is highly useful for planners, land managers, farmers and plant breeders who can propose and apply adaptation strategies to improve agricultural potentialities. The aim of this study was to develop an assessment method for crop-climate suitability that was generic enough to be applied to a wide range of issues and crops. The method proposed is based on agroclimatic indicators that are calculated over phenological periods (ecoclimatic indicators). These indicators are highly relevant since they provide accurate information about the effect of climate on particular plant processes and cultural practices that take place during specific phenological periods. Three case studies were performed in order to illustrate the potentialities of the method. They concern annual (maize and wheat) and perennial (grape) crops and focus on the study of climate suitability in terms of the following criteria: ecophysiological, days available to carry out cultural practices, and harvest quality. The analysis of the results revealed both the advantages and limitations of the method. The method is general and flexible enough to be applied to a wide range of issues even if an expert assessment is initially needed to build the analysis framework. The limited number of input data makes it possible to use it to explore future possibilities for agriculture in many areas. The access to intermediate information through elementary ecoclimatic indicators allows users to propose targeted adaptations when climate suitability is not satisfactory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1923 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4553
Permanent link to this record
 

 
Author Bai, H.; Tao, F.
Title Sustainable intensification options to improve yield potential and ecoefficiency for rice-wheat rotation system in China Type Journal Article
Year 2017 Publication Field Crops Research Abbreviated Journal Field Crops Research
Volume 211 Issue Pages (down) 89-105
Keywords Adaptation; Agro-ecosystem; Climate smart agriculture; Impacts; Sustainable development; Yield gap; Past 3 Decades; Climate-Change; Winter-Wheat; Agricultural Systems; Cropping Systems; High-Temperature; Plain; Management; Cultivars; Maize
Abstract Agricultural production systems are facing the challenges of increasing food production while reducing environmental cost, particularly in China. To improve yield potential and eco-efficiency simultaneously for the rice-wheat rotation system in China, we investigated changes in potential yields and yield gaps based on the field experiment data from 1981 to 2009 at four representative agro-meteorological experiment stations, along with the Agricultural Production System Simulator (APSIM) rice-wheat model. We further optimized crop cultivar and sowing/transplanting date, and investigated crop yield, water and nitrogen use efficiency, and environment impact of the rice-wheat rotation system in response to water and nitrogen supply. We found that the yield gaps between potential yields and farmer’s yields were about 8101 kg/ha or 45.3% of the potential yield, which had been shrinking from 1981 to 2009. To improve yield potentials and eco-efficiency, the cultivars of rice and wheat that properly increase both radiation use efficiency and grain weight are promising. Rice cultivars breeding need to maintain the length of panicle development and reproductive phase. High-yielding wheat cultivars are characterized by medium vernalization sensitivity, low photoperiod sensitivity and short length of floral initiation phase. Proper shift in sowing date can alleviate the negative effect of climate risk. Intermittent irrigation scheme (irrigate until surface soil saturated when average water content of surface soil is < 50% of saturated water content) for rice, together with nitrogen application rate of 390-420 kg N/ha (180-210 kg N/ha for rice and 210 kg N/ha for wheat), is suggested for the rice-wheat rotation system to maintain high yield with high resource use efficiency. This suggested nitrogen application rates are lower than those currently used by many local farmers. Our findings are useful to improve yield potential and eco-efficiency for the rice-wheat rotation system in China. Furthermore, this study demonstrates an effective approach with crop modelling to design fanning system for sustainable intensification, which can be adapted to other farming systems and regions.
Address 2017-08-28
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-4290 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5174
Permanent link to this record
 

 
Author Nelson, G.C.; van der Mensbrugghe, D.; Ahammad, H.; Blanc, E.; Calvin, K.; Hasegawa, T.; Havlik, P.; Heyhoe, E.; Kyle, P.; Lotze-Campen, H.; von Lampe, M.; Mason, d’C., Daniel; van Meijl, H.; Müller, C.; Reilly, J.; Robertson, R.; Sands, R.D.; Schmitz, C.; Tabeau, A.; Takahashi, K.; Valin, H.; Willenbockel, D.
Title Agriculture and climate change in global scenarios: why don’t the models agree Type Journal Article
Year 2014 Publication Agricultural Economics Abbreviated Journal Agric. Econ.
Volume 45 Issue 1 Pages (down) 85-85
Keywords climate change impacts; economic models of agriculture; scenarios; system model; demand; cmip5
Abstract Agriculture is unique among economic sectors in the nature of impacts from climate change. The production activity that transforms inputs into agricultural outputs involves direct use of weather inputs (temperature, solar radiation available to the plant, and precipitation). Previous studies of the impacts of climate change on agriculture have reported substantial differences in outcomes such as prices, production, and trade arising from differences in model inputs and model specification. This article presents climate change results and underlying determinants from a model comparison exercise with 10 of the leading global economic models that include significant representation of agriculture. By harmonizing key drivers that include climate change effects, differences in model outcomes were reduced. The particular choice of climate change drivers for this comparison activity results in large and negative productivity effects. All models respond with higher prices. Producer behavior differs by model with some emphasizing area response and others yield response. Demand response is least important. The differences reflect both differences in model specification and perspectives on the future. The results from this study highlight the need to more fully compare the deep model parameters, to generate a call for a combination of econometric and validation studies to narrow the degree of uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better map the contours of economic uncertainty.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-5150 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4796
Permanent link to this record