toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Balkovič, J.; van der Velde, M.; Schmid, E.; Skalský, R.; Khabarov, N.; Obersteiner, M.; Stürmer, B.; Xiong, W. url  doi
openurl 
  Title Pan-European crop modelling with EPIC: Implementation, up-scaling and regional crop yield validation Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume (down) 120 Issue Pages 61-75  
  Keywords EPIC; large-scale crop modelling; model performance testing; EU; climate-change; high-resolution; organic-carbon; growth-model; wheat yield; water; calibration; impacts; productivity; simulations  
  Abstract Justifiable usage of large-scale crop model simulations requires transparent, comprehensive and spatially extensive evaluations of their performance and associated accuracy. Simulated crop yields of a Pan-European implementation of the Environmental Policy Integrated Climate (EPIC) crop model were satisfactorily evaluated with reported regional yield data from EUROSTAT for four major crops, including winter wheat, rainfed and irrigated maize, spring barley and winter rye. European-wide land use, elevation, soil and daily meteorological gridded data were integrated in GIS and coupled with EPIC. Default EPIC crop and biophysical process parameter values were used with some minor adjustments according to suggestions from scientific literature. The model performance was improved by spatial calculations of crop sowing densities, potential heat units, operation schedules, and nutrient application rates. EPIC performed reasonable in the simulation of regional crop yields, with long-term averages predicted better than inter-annual variability: linear regression R-2 ranged from 0.58 (maize) to 0.91 (spring barley) and relative estimation errors were between +/- 30% for most of the European regions. The modelled and reported crop yields demonstrated similar responses to driving meteorological variables. However, EPIC performed better in dry compared to wet years. A yield sensitivity analysis of crop nutrient and irrigation management factors and cultivar specific characteristics for contrasting regions in Europe revealed a range in model response and attainable yields. We also show that modelled crop yield is strongly dependent on the chosen PET method. The simulated crop yield variability was lower compared to reported crop yields. This assessment should contribute to the availability of harmonised and transparently evaluated agricultural modelling tools in the EU as well as the establishment of modelling benchmarks as a requirement for sound and ongoing policy evaluations in the agricultural and environmental domains. (C) 2013 The Authors. Published by Elsevier Ltd. All rights reserved.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4737  
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P. url  doi
openurl 
  Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
  Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume (down) 117 Issue Pages 1-12  
  Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture  
  Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308521x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4489  
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Balek, J.; Olesen, J.E.; Ruiz-Ramos, M.; Gobin, A.; Kersebaum, K.C.; Takac, J.; Ruget, F.; Ferrise, R.; Bezak, P.; Capellades, G.; Dibari, C.; Makinen, H.; Nendel, C.; Ventrella, D.; Rodriguez, A.; Bindi, M.; Trnka, M. doi  openurl
  Title Decline in climate resilience of European wheat Type Journal Article
  Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc. Natl. Acad. Sci. U. S. A.  
  Volume (down) 116 Issue 1 Pages 123-128  
  Keywords wheat; cultivar; Europe; climate resilience; response diversity; Diversity; Weather; Growth; Shifts; Crops; Yield; Variability  
  Abstract Food security relies on the resilience of staple food crops to climatic variability and extremes, but the climate resilience of European wheat is unknown. A diversity of responses to disturbance is considered a key determinant of resilience. The capacity of a sole crop genotype to perform well under climatic variability is limited; therefore, a set of cultivars with diverse responses to weather conditions critical to crop yield is required. Here, we show a decline in the response diversity of wheat in farmers’ fields in most European countries after 2002-2009 based on 101,000 cultivar yield observations. Similar responses to weather were identified in cultivar trials among central European countries and southern European countries. A response diversity hotspot appeared in the trials in Slovakia, while response diversity “deserts” were identified in Czechia and Germany and for durum wheat in southern Europe. Positive responses to abundant precipitation were lacking. This assessment suggests that current breeding programs and cultivar selection practices do not sufficiently prepare for climatic uncertainty and variability. Consequently, the demand for climate resilience of staple food crops such as wheat must be better articulated. Assessments and communication of response diversity enable collective learning across supply chains. Increased awareness could foster governance of resilience through research and breeding programs, incentives, and regulation.  
  Address 2019-01-17  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5226  
Permanent link to this record
 

 
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P. url  doi
openurl 
  Title Simulating the Nutritive Value of Timothy Summer Regrowth Type Journal Article
  Year 2013 Publication Agronomy Journal Abbreviated Journal Agronomy Journal  
  Volume (down) 105 Issue 3 Pages 563  
  Keywords varying n nutrition; cation-anion difference; spring growth; swine manure; leaf-area; nitrogen; yield; model; digestibility; dynamics  
  Abstract The process-based grass model, CATIMO, simulates the spring growth and nutritive value of timothy (Phleum pratense L.), a forage species widely grown in Scandinavia and Canada, but the nutritive value of the summer regrowth has never been simulated. Our objective was to improve CATIMO for simulating the N concentration, neutral detergent fiber (NDF), in vitro digestibility of NDF (dNDF), and in vitro true digestibility of dry matter (IVTD) of summer regrowth. Daily changes in summer regrowth nutritive value were simulated by modifying key crop parameters that differed from spring growth. More specifically, the partitioning fraction to leaf blades was increased to increase the leaf-to-weight ratio, and daily changes in NDF and dNDF of leaf blades and stems were reduced. The modified CATIMO model was evaluated with data from four independent experiments in eastern and western Canada and Finland. The model performed better for eastern Canada than for the other locations, but the nutritive value attributes of the summer regrowth across locations (range of normalized RMSE = 8-25%, slope < 0.17, R-2 < 0.10) were not simulated as well as those of the spring growth (range of normalized RMSE = 4-16%, 0.85 < slope < 1.07, R-2 > 0.61). These modeling results highlight knowledge gaps in timothy summer regrowth and prospective research directions: improved knowledge of factors controlling the nutritive value of the timothy summer regrowth and experimental measurements of leaf-to-weight ratio and of the nutritive value of leaves and stems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1962 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4493  
Permanent link to this record
 

 
Author Schils, R.; Olesen, J.E.; Kersebaum, K.-C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; Manolov, I.; Trnka, M.; Hlavinka, P.; Palosuo, T.; Peltonen-Sainio, P.; Jauhiainen, L.; Lorgeou, J.; Marrou, H.; Danalatos, N.; Archontoulis, S.; Fodor, N.; Spink, J.; Roggero, P.P.; Bassu, S.; Pulina, A.; Seehusen, T.; Uhlen, A.K.; Zylowska, K.; Nierobca, A.; Kozyra, J.; Silva, J.V.; Macas, B.M.; Coutinho, J.; Ion, V.; Takac, J.; Ines Minguez, M.; Eckersten, H.; Levy, L.; Herrera, J.M.; Hiltbrunner, J.; Kryvobok, O.; Kryvoshein, O.; Sylvester-Bradley, R.; Kindred, D.; Topp, C.F.E.; Boogaard, H.; de Groot, H.; Lesschen, J.P.; van Bussel, L.; Wolf, J.; Zijlstra, M.; van Loon, M.P.; van Ittersum, M.K. doi  openurl
  Title Cereal yield gaps across Europe Type Journal Article
  Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume (down) 101 Issue Pages 109-120  
  Keywords Wheat, Barley, Grain maize, Crop modelling, Yield potential, Nitrogen; Nitrogen Use Efficiency; Sustainable Intensification; Climate-Change; Land-Use; Wheat; Soil; Agriculture; Impacts; Fertility; Emissions  
  Abstract Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha(-1) for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5213  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: