toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Jing, Q.; Bélanger, G.; Baron, V.; Bonesmo, H.; Virkajärvi, P. url  doi
openurl 
  Title Simulating the Nutritive Value of Timothy Summer Regrowth Type Journal Article
  Year 2013 Publication Agronomy Journal Abbreviated Journal Agronomy Journal  
  Volume 105 Issue 3 Pages 563  
  Keywords varying n nutrition; cation-anion difference; spring growth; swine manure; leaf-area; nitrogen; yield; model; digestibility; dynamics  
  Abstract The process-based grass model, CATIMO, simulates the spring growth and nutritive value of timothy (Phleum pratense L.), a forage species widely grown in Scandinavia and Canada, but the nutritive value of the summer regrowth has never been simulated. Our objective was to improve CATIMO for simulating the N concentration, neutral detergent fiber (NDF), in vitro digestibility of NDF (dNDF), and in vitro true digestibility of dry matter (IVTD) of summer regrowth. Daily changes in summer regrowth nutritive value were simulated by modifying key crop parameters that differed from spring growth. More specifically, the partitioning fraction to leaf blades was increased to increase the leaf-to-weight ratio, and daily changes in NDF and dNDF of leaf blades and stems were reduced. The modified CATIMO model was evaluated with data from four independent experiments in eastern and western Canada and Finland. The model performed better for eastern Canada than for the other locations, but the nutritive value attributes of the summer regrowth across locations (range of normalized RMSE = 8-25%, slope < 0.17, R-2 < 0.10) were not simulated as well as those of the spring growth (range of normalized RMSE = 4-16%, 0.85 < slope < 1.07, R-2 > 0.61). These modeling results highlight knowledge gaps in timothy summer regrowth and prospective research directions: improved knowledge of factors controlling the nutritive value of the timothy summer regrowth and experimental measurements of leaf-to-weight ratio and of the nutritive value of leaves and stems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1962 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, LiveM Approved no  
  Call Number MA @ admin @ Serial 4493  
Permanent link to this record
 

 
Author Rusu, T. url  doi
openurl 
  Title Energy efficiency and soil conservation in conventional, minimum tillage and no-tillage Type Journal Article
  Year 2014 Publication International Soil and Water Conservation Research Abbreviated Journal International Soil and Water Conservation Research  
  Volume 2 Issue 4 Pages 42-49  
  Keywords No-tillage; Minimum tillage; Yield; Energy efficiency; Soil conservation  
  Abstract The objective of this research was to determine the capacity of a soil tillage system in soil conservation, in productivity and in energy efficiency. The minimum tillage and no-tillage systems represent good alternatives to the conventional (plough) system of soil tillage, due to their conservation effects on soil and to the good production of crops (Maize, 96%-98% of conventional tillage for minimum tillage, and 99.8% of conventional tillage for no till; Soybeans, 103%-112% of conventional tillage for minimum tillage and 117% of conventional tillage for no till; Wheat, 93%-97% of conventional tillage for minimum tillage and 117% of conventional tillage for no till. The choice of the right soil tillage system for crops in rotation help reduce energy consumption, thus for maize: 97%-98% energy consumption of conventional tillage when using minimum tillage and 91% when using no-tillage; for soybeans: 98% energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage; for wheat: 97%-98% energy consumption of conventional tillage when using minimum tillage and 92% when using no-tillage. Energy efficiency is in relation to reductions in energy use, but also might include the efficiency and impact of the tillage system on the cultivated plant. For all crops in rotation, energy efficiency (energy produced from 1 MJ consumed) was the best in no-tillage — 10.44 MJ ha− 1 for maize, 6.49 MJ ha− 1 for soybean, and 5.66 MJ ha− 1 for wheat. An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons, but must be supplemented by soil energy efficiency, based on the conservative effect of the agricultural system. Only then will the agricultural system be sustainable, durable in agronomic, economic and ecological terms. The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2% to 7.6% and water stable aggregate content from 5.6% to 9.6%, at 0–30 cm depth, as compared to the conventional system. Accumulated water supply was higher (with 12.4%-15%) for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03% (no significant difference) While the soil fertility and the wet aggregate stability have initially been low, the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil. Availability of soil moisture during the crop growth period led to a better plant watering condition. Subsequent release of conserved soil water regulated the plant water condition and soil structure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2095-6339 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4637  
Permanent link to this record
 

 
Author Seddaiu, G.; Iocola, I.; Farina, R.; Orsini, R.; Iezzi, G.; Roggero, P.P. url  doi
openurl 
  Title Long term effects of tillage practices and N fertilization in rainfed Mediterranean cropping systems: durum wheat, sunflower and maize grain yield Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages 166-178  
  Keywords No tillage; Minimum tillage; Silty-clay soil; Yield stability; Recursive partitioning analysis; Rainfed cropping systems; northern Great-Plains; clay loam soil; nitrogen-fertilization; conventional tillage; winter-wheat; growth; quality; rotation; crops; water  
  Abstract Long term investigations on the combined effects of tillage systems and other agronomic practices such as mineral N fertilization under Mediterranean conditions on durum wheat are very scanty and findings are often contradictory. Moreover, no studies are available on the long term effect of the adoption of conservation tillage on grain yield of maize and sunflower grown in rotation with durum wheat under rainfed Mediterranean conditions. This paper reports the results of a 20-years experiment on a durum wheat-sunflower (7 years) and durum wheat–maize (13 years) two-year rotation, whose main objective was to quantify the long term effects of different tillage practices (CT = conventional tillage; MT = minimum tillage; NT = no tillage) combined with different nitrogen fertilizer rates (N0, N1, N2 corresponding to 0, 45 and 90 kg N ha−1 for sunflower, and 0, 90 and 180 kg N ha−1 for wheat and maize) on grain yield, yield components and yield stability for the three crops. In addition, the influence of meteorological factors on the interannual variability of studied variables was also assessed. For durum wheat, NT did not allow substantial yield benefits leading to comparable yields with respect to CT in ten out of twenty years. For both sunflower and maize, NT under rainfed conditions was not a viable options, because of the unsuitable (i.e., too wet) soil conditions of the clayish soil at sowing. Both spring crops performed well with MT. No significant N × tillage interaction was found for the three crops. As expected, the response of durum wheat and maize grain yield to N was remarkable, while sunflower grain yield was not significantly influenced by N rate. Wheat yield was constrained by high temperatures in January during tillering and drought in April during heading. The interannual yield variability of sunflower was mainly associated to soil water deficit at flowering and air temperature during seed filling. Heavy rains during this latter phase strongly constrained sunflower grain yield. Maize grain yield was negatively affected by high temperatures in June and drought in July, this latter factor was particularly important in the fertilized maize. Considering both yield and yield stability, durum wheat and sunflower performed better under MT and N1 while maize performed better under both CT and MT and with N2 rates. The results of this long term study are suitable for supporting policies on sustainable Mediterranean rainfed cropping systems and also for cropping system modelling.  
  Address 2016-07-22  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4722  
Permanent link to this record
 

 
Author Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; Reynolds, M.P.; Alderman, P.D.; Prasad, P.V.V.; Aggarwal, P.K.; Anothai, J.; Basso, B.; Biernath, C.; Challinor, A.J.; De Sanctis, G.; Doltra, J.; Fereres, E.; Garcia-Vila, M.; Gayler, S.; Hoogenboom, G.; Hunt, L.A.; Izaurralde, R.C.; Jabloun, M.; Jones, C.D.; Kersebaum, K.C.; Koehler, A.-K.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O’Leary, G.; Olesen, J.E.; Palosuo, T.; Priesack, E.; Eyshi Rezaei, E.; Ruane, A.C.; Semenov, M.A.; Shcherbak, I.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Thorburn, P.J.; Waha, K.; Wang, E.; Wallach, D.; Wolf, J.; Zhao, Z.; Zhu, Y. url  doi
openurl 
  Title Rising temperatures reduce global wheat production Type Journal Article
  Year 2014 Publication Nature Climate Change Abbreviated Journal Nat. Clim. Change  
  Volume 5 Issue 2 Pages 143-147  
  Keywords climate-change; spring wheat; dryland wheat; yield; growth; drought; heat; CO2; agriculture; adaptation  
  Abstract Crop models are essential tools for assessing the threat of climate change to local and global food production1. Present models used to predict wheat grain yield are highly uncertain when simulating how crops respond to temperature2. Here we systematically tested 30 different wheat crop models of the Agricultural Model Intercomparison and Improvement Project against field experiments in which growing season mean temperatures ranged from 15 °C to 32 °C, including experiments with artificial heating. Many models simulated yields well, but were less accurate at higher temperatures. The model ensemble median was consistently more accurate in simulating the crop temperature response than any single model, regardless of the input information used. Extrapolating the model ensemble temperature response indicates that warming is already slowing yield gains at a majority of wheat-growing locations. Global wheat production is estimated to fall by 6% for each °C of further temperature increase and become more variable over space and time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1758-678x ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4550  
Permanent link to this record
 

 
Author Lessire, F.; Hornick, J.L.; Minet, J.; Dufrasne, I. url  doi
openurl 
  Title Rumination time, milk yield, milking frequency of grazing dairy cows milked by a mobile automatic system during mild heat stress Type Journal Article
  Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences  
  Volume 6 Issue 01 Pages 12-14  
  Keywords dairy; heat stress; THI; behaviour; milk yield  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2040-4700 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4570  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: