toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Özkan Gülzari, Ş.; Åby, B.A.; Persson, T.; Höglind, M.; Mittenzwei, K. doi  openurl
  Title Combining models to estimate the impacts of future climate scenarios on feed supply, greenhouse gas emissions and economic performance on dairy farms in Norway Type Journal Article
  Year 2017 Publication Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 157 Issue Pages 157-169  
  Keywords Climate change; Dairy farming; Dry matter yield; Economics; Greenhouse gas emission; Modelling  
  Abstract • This study combines crop, livestock and economic models.

• Models interaction is through use of relevant input and output variables.

• Future climate change will result in increased grass and wheat dry matter yields.

• Changes in grass, wheat and milk yields in future reduce farm emissions intensity.

• Changes in future dry matter yields and emissions lead to increased profitability.

There is a scientific consensus that the future climate change will affect grass and crop dry matter (DM) yields. Such yield changes may entail alterations to farm management practices to fulfill the feed requirements and reduce the farm greenhouse gas (GHG) emissions from dairy farms. While a large number of studies have focused on the impacts of projected climate change on a single farm output (e.g. GHG emissions or economic performance), several attempts have been made to combine bio-economic systems models with GHG accounting frameworks. In this study, we aimed to determine the physical impacts of future climate scenarios on grass and wheat DM yields, and demonstrate the effects such changes in future feed supply may have on farm GHG emissions and decision-making processes. For this purpose, we combined four models: BASGRA and CSM-CERES-Wheat models for simulating forage grass DM and wheat DM grain yields respectively; HolosNor for estimating the farm GHG emissions; and JORDMOD for calculating the impacts of changes in the climate and management on land use and farm economics. Four locations, with varying climate and soil conditions were included in the study: south-east Norway, south-west Norway, central Norway and northern Norway. Simulations were carried out for baseline (1961–1990) and future (2046–2065) climate conditions (projections based on two global climate models and the Special Report on Emissions Scenarios (SRES) A1B GHG emission scenario), and for production conditions with and without a milk quota. The GHG emissions intensities (kilogram carbon dioxide equivalent: kgCO2e emissions per kg fat and protein corrected milk: FPCM) varied between 0.8 kg and 1.23 kg CO2e (kg FPCM)− 1, with the lowest and highest emissions found in central Norway and south-east Norway, respectively. Emission intensities were generally lower under future compared to baseline conditions due mainly to higher future milk yields and to some extent to higher crop yields. The median seasonal above-ground timothy grass yield varied between 11,000 kg and 16,000 kg DM ha− 1 and was higher in all projected future climate conditions than in the baseline. The spring wheat grain DM yields simulated for the same weather conditions within each climate projection varied between 2200 kg and 6800 kg DM ha− 1. Similarly, the farm profitability as expressed by total national land rents varied between 1900 million Norwegian krone (NOK) for median yields under baseline climate conditions up to 3900 million NOK for median yield under future projected climate conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language (down) phase 2 Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes CropM, LiveM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5172  
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J. url  doi
openurl 
  Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
  Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 11 Issue 2 Pages 025002  
  Keywords sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa  
  Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (down) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4733  
Permanent link to this record
 

 
Author Pirttioja, N.; Carter, T.R.; Fronzek, S.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.F.; Dumont, B.; Ewert, F.; Ferrise, R.; François, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczak, J.; Lorite, I.J.; Minet, J.; Minguez, M.I.; Montesino-San Martin, M.; Moriondo, M.; Müller, C.; Nendel, C.; Öztürk, I.; Perego, A.; Rodríguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rötter, R.P. url  doi
openurl 
  Title Temperature and precipitation effects on wheat yield across a European transect: a crop model ensemble analysis using impact response surfaces Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 87-105  
  Keywords climate; crop model; impact response surface; IRS; sensitivity analysis; wheat; yield; climate-change impacts; uncertainty; 21st-century; projections; simulation; growth; region  
  Abstract This study explored the utility of the impact response surface (IRS) approach for investigating model ensemble crop yield responses under a large range of changes in climate. IRSs of spring and winter wheat Triticum aestivum yields were constructed from a 26-member ensemble of process-based crop simulation models for sites in Finland, Germany and Spain across a latitudinal transect. The sensitivity of modelled yield to systematic increments of changes in temperature (-2 to +9°C) and precipitation (-50 to +50%) was tested by modifying values of baseline (1981 to 2010) daily weather, with CO2 concentration fixed at 360 ppm. The IRS approach offers an effective method of portraying model behaviour under changing climate as well as advantages for analysing, comparing and presenting results from multi-model ensemble simulations. Though individual model behaviour occasionally departed markedly from the average, ensemble median responses across sites and crop varieties indicated that yields decline with higher temperatures and decreased precipitation and increase with higher precipitation. Across the uncertainty ranges defined for the IRSs, yields were more sensitive to temperature than precipitation changes at the Finnish site while sensitivities were mixed at the German and Spanish sites. Precipitation effects diminished under higher temperature changes. While the bivariate and multi-model characteristics of the analysis impose some limits to interpretation, the IRS approach nonetheless provides additional insights into sensitivities to inter-model and inter-annual variability. Taken together, these sensitivities may help to pinpoint processes such as heat stress, vernalisation or drought effects requiring refinement in future model development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (down) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4662  
Permanent link to this record
 

 
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. url  doi
openurl 
  Title Can crop-climate models be accurate and precise? A case study for wheat production in Denmark Type Journal Article
  Year 2015 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 202 Issue Pages 51-60  
  Keywords Uncertainty; Model intercomparison; Bayesian approach; Climate change; Wheat; Denmark; uncertainty analysis; simulation-models; bayesian-approach; change; impact; yields; variability; projections; scale; calibration; framework  
  Abstract Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical and mechanistic wheat models to assess how differences in the extent of process understanding in models affects uncertainties in projected impact. Predictive power of the models was tested via both accuracy (bias) and precision (or tightness of grouping) of yield projections for extrapolated weather conditions. Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher accuracy comes at the cost of precision of the mechanistic model to embrace all observations within given boundaries. The approaches showed complementarity in sensitivity to weather variables and in accuracy for different extrapolation domains. Their differences in model precision and accuracy make them suitable for generic model ensembles for near-term agricultural impact assessments of climate change.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (down) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4572  
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Webber, H.; Otegui, M.E.; Slafer, G.A.; Ordonez, R.A.; Gaiser, T.; Lorite, I.J.; Ruiz-Ramos, M.; Ewert, F. doi  openurl
  Title Modelling the impact of heat stress on maize yield formation Type Journal Article
  Year 2016 Publication Field Crops Research Abbreviated Journal Field Crops Research  
  Volume 198 Issue Pages 226-237  
  Keywords Heat stress; Maize; Zea mays (L); Crop models; HIGH-TEMPERATURE STRESS; KERNEL NUMBER; CROP GROWTH; GRAIN-YIELD; SIMULATION; CLIMATE; HYBRIDS; SET; VALIDATION; COMPONENTS  
  Abstract The frequency and intensity of extreme high temperature events are expected to increase with climate change. Higher temperatures near anthesis have a large negative effect on maize (Zea mays, L.) grain yield. While crop growth models are commonly used to assess climate change impacts on maize and other crops, it is only recently that they have accounted for such heat stress effects, despite limited field data availability for model evaluation. There is also increasing awareness but limited testing of the importance of canopy temperature as compared to air temperature for heat stress impact simulations. In this study, four independent irrigated field trials with controlled heating imposed using polyethylene shelters were used to develop and evaluate a heat stress response function in the crop modeling framework SIMPLACE, in which the Lintul5 crop model was combined with a canopy temperature model. A dataset from Argentina with the temperate hybrid Nidera AX 842 MG (RM 119) was used to develop a yield reduction function based on accumulated hourly stress thermal time above a critical temperature of 34 degrees C. A second dataset from Spain with a FAO 700 cultivar was used to evaluate the model with daily weather inputs in two sets of simulations. The first was used to calibrate SIMPLACE for conditions with no heat stress, and the second was used to evaluate SIMPLACE under conditions of heat stress using the reduction factor obtained with the Argentine dataset. Both sets of simulations were conducted twice; with the heat stress function alternatively driven with air and simulated canopy temperature. Grain yield simulated under heat stress conditions improved when canopy temperature was used instead of air temperature (RMSE equal to 175 and 309 g m(-2), respectively). For the irrigated and high radiative conditions, raising the critical threshold temperature for heat stress to 39 degrees C improved yield simulation using air temperature (RMSE: 221 gm(-2)) without the need to simulate canopy temperature (RMSE: 175 gm(-2)). However, this approach of adjusting thresholds is only likely to work in environments where climatic variables and the level of soil water deficit are constant, such as irrigated conditions and are not appropriate for rainfed production conditions. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2016-11-17  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language (down) Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-4290, 1872-6852 ISBN Medium Article  
  Area Expedition Conference  
  Notes ft_macsur, CropM Approved no  
  Call Number MA @ admin @ Serial 4880  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: