toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schönhart, M.; Mitter, H.; Schmid, E.; Heinrich, G.; Gobiet, A. openurl 
  Title Integrated analysis of climate change impacts and adaptation measures in Austrian agriculture Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 156-176  
  Keywords land use; modelling; climate change impact; adaptation; integrated analysis; epic; pasma; crop production; land-use; management-practices; model projections; central-europe; soil-erosion; water; variability; strategies; region  
  Abstract An integrated modelling framework (IMF) has been developed and applied to analyse climate change impacts and the effectiveness of adaptation measures in Austrian agriculture. The IMF couples the crop rotation model CropRota, the bio-physical process model EPIC and the bottom-up economic land use model PASMA at regional level (NUTS-3) considering agri-environmental indicators. Four contrasting regional climate model (RCM) simulations represent climate change until 2050. The RCM simulations are applied to a baseline and three adaptation and policy scenarios. Climate change increases crop productivity on national average in the IMF. Changes in average gross margins at national level range from 0% to + 5% between the baseline and the three adaptation and policy scenarios. The impacts at NUTS-3 level range from -5% to + 7% between the baseline and the three adaptation and policy scenarios. Adaptation measures such as planting of winter cover crops, reduced tillage and irrigation are effective in reducing yield losses, increasing revenues, or in improving environmental states under climate change. Future research should account for extreme weather events in order to analyse whether average productivity gains at the aggregated level suffice to cover costs from expected higher climate variability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1121 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4652  
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Carter, T.R.; Harrison, P.A.; Rounsevell, M. doi  openurl
  Title Improving the representation of adaptation in climate change impact models Type Journal Article
  Year 2019 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume 19 Issue 3 Pages 711-721  
  Keywords Adaptive capacity; Limits; Water; Land; Decision making; Integrated assessment; Land-Cover Change; Global Change; River-Basin; Integrated Assessment; Adaptive Capacity; Vulnerability; Variability; Precautionary; Agriculture; Management  
  Abstract Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5220  
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P. url  doi
openurl 
  Title An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment Type Journal Article
  Year 2013 Publication Water Resource Management Abbreviated Journal Water Resource Manage.  
  Volume 27 Issue 10 Pages 3607-3622  
  Keywords discrete stochastic programming; climate change variability; adaptation to climate change; net evapotranspiration and irrigation requirements; water availability; epic crops model; economic impact of climate change; precipitation; uncertainty; region; series; yield; model; scale; wheat; gis  
  Abstract Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-4741 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) TradeM Approved no  
  Call Number MA @ admin @ Serial 4487  
Permanent link to this record
 

 
Author Below, T.B.; Mutabazi, K.D.; Kirschke, D.; Franke, C.; Sieber, S.; Siebert, R.; Tscherning, K. url  doi
openurl 
  Title Can farmers’ adaptation to climate change be explained by socio-economic household-level variables Type Journal Article
  Year 2012 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 22 Issue 1 Pages 223-235  
  Keywords Sub-Saharan Africa; Tanzania; Adaptive capacity; Index; Vulnerability; Adaptation; adaptive capacity; environmental-change; south-africa; vulnerability; variability; resilience; tanzania; framework; drought; policy  
  Abstract A better understanding of processes that shape farmers’ adaptation to climate change is critical to identify vulnerable entities and to develop well-targeted adaptation policies. However, it is currently poorly understood what determines farmers’ adaptation and how to measure it. In this study, we develop an activity-based adaptation index (AAI) and explore the relationship between socioeconomic variables and farmers’ adaptation behavior by means of an explanatory factor analysis and a multiple linear regression model using latent variables. The model was tested in six villages situated in two administrative wards in the Morogoro region of Tanzania. The Mlali ward represents a system of relatively high agricultural potential, whereas the Gairo ward represents a system of low agricultural potential. A household survey, a rapid rural appraisal and, a stakeholder workshop were used for data collection. The data were analyzed using factor analysis, multiple linear regression, descriptive statistical methods and qualitative content analysis. The empirical results are discussed in the context of theoretical concepts of adaptation and the sustainable livelihood approach. We found that public investment in rural infrastructure, in the availability and technically efficient use of inputs, in a good education system that provides equal chances for women, and in the strengthening of social capital, agricultural extension and, microcredit services are the best means of improving the adaptation of the farmers from the six villages in Gairo and Mlali. We conclude that the newly developed AAI is a simple but promising way to capture the complexity of adaptation processes that addresses a number of shortcomings of previous index studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes (down) TradeM Approved no  
  Call Number MA @ admin @ Serial 4467  
Permanent link to this record
 

 
Author Gomara, I.; Bellocchi, G.; Martin, R.; Rodriguez-Fonseca, B.; Ruiz-Ramos, M. doi  openurl
  Title Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 280 Issue Pages 107768  
  Keywords climate variability; grasslands; potential yield; climate services; forage production forecasts; french massif central; pasture simulation-model; dry-matter production; atmospheric; circulation; crop yield; SST anomalies; maize yield; managed grasslands; storm track; ENSO; impacts  
  Abstract Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes (down) LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5233  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: