toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gomara, I.; Bellocchi, G.; Martin, R.; Rodriguez-Fonseca, B.; Ruiz-Ramos, M. doi  openurl
  Title Influence of climate variability on the potential forage production of a mown permanent grassland in the French Massif Central Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 280 Issue Pages 107768  
  Keywords climate variability; grasslands; potential yield; climate services; forage production forecasts; french massif central; pasture simulation-model; dry-matter production; atmospheric; circulation; crop yield; SST anomalies; maize yield; managed grasslands; storm track; ENSO; impacts  
  Abstract Climate Services (CS) provide support to decision makers across socio-economic sectors. In the agricultural sector, one of the most important CS applications is to provide timely and accurate yield forecasts based on climate prediction. In this study, the Pasture Simulation model (PaSim) was used to simulate, for the period 1959–2015, the forage production of a mown grassland system (Laqueuille, Massif Central of France) under different management conditions, with meteorological inputs extracted from the SAFRAN atmospheric database. The aim was to generate purely climate-dependent timeseries of optimal forage production, a variable that was maximized by brighter and warmer weather conditions at the grassland. A long-term increase was observed in simulated forage yield, with the 1995–2015 average being 29% higher than the 1959–1979 average. Such increase seems consistent with observed rising trends in temperature and CO2, and multi-decadal changes in incident solar radiation. At interannual timescales, sea surface temperature anomalies of the Mediterranean (MED), Tropical North Atlantic (TNA), equatorial Pacific (El Niño Southern Oscillation) and the North Atlantic Oscillation (NAO) index were found robustly correlated with annual forage yield values. Relying only on climatic predictors, we developed a stepwise statistical multi-regression model with leave-one-out cross-validation. Under specific management conditions (e.g., three annual cuts) and from one to five months in advance, the generated model successfully provided a p-value<0.01 in correlation (t-test), a root mean square error percentage (%RMSE) of 14.6% and a 71.43% hit rate predicting above/below average years in terms of forage yield collection. This is the first modeling study on the possible role of large-scale oceanic–atmospheric teleconnections in driving forage production in Europe. As such, it provides a useful springboard to implement a grassland seasonal forecasting system in this continent.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5233  
Permanent link to this record
 

 
Author Stürck, J.; Levers, C.; van der Zanden, E.H.; Schulp, C.J.E.; Verkerk, P.J.; Kuemmerle, T.; Helming, J.; Lotze-Campen, H.; Tabeau, A.; Popp, A.; Schrammeijer, E.; Verburg, P. url  doi
openurl 
  Title Simulating and delineating future land change trajectories across Europe Type Journal Article
  Year 2015 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume Issue Pages in press  
  Keywords land use change; land system; modeling; scenario; Europe; ecosystem services  
  Abstract Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4996  
Permanent link to this record
 

 
Author Sandhu, H.; Wratten, S.; Costanza, R.; Pretty, J.; Porter, J.R.; Reganold, J. url  doi
openurl 
  Title Significance and value of non-traded ecosystem services on farmland Type Journal Article
  Year 2015 Publication PeerJ Abbreviated Journal PeerJ  
  Volume 3 Issue Pages e762  
  Keywords Agroecosystems; Arable farmland; Economic value; Ecosystem services; Externalities; New Zealand  
  Abstract Background. Ecosystem services (ES) generated within agricultural landscapes, including field boundaries, are vital for the sustainable supply of food and fibre. However, the value of ES in agriculture has not been quantified experimentally and then extrapolated globally. Methods. We quantified the economic value of two key but contrasting ES (biological control of pests and nitrogen mineralisation) provided by non-traded non-crop species in ten organic and ten conventional arable fields in New Zealand using field experiments. The arable crops grown, same for each organic and conventional pair, were peas (Pisum sativum), beans (Phaseolus vulgaris), barley (Hordeum vulgare), and wheat (Triticum aestivum). Organic systems were chosen as comparators not because they are the only forms of sustainable agriculture, but because they are subject to easily understood standards. Results. We found that organic farming systems depended on fewer external inputs and produced outputs of energy and crop dry matter generally less than but sometimes similar to those of their conventional counterparts. The economic values of the two selected ES were greater for the organic systems in all four crops, ranging from US$ 68-200 ha(-1) yr(-1) for biological control of pests and from US$ 110-425 ha(-1)yr(-1) for N mineralisation in the organic systems versus US$ 0 ha(-1)yr(-1) for biological control of pests and from US$ 60-244 ha(-1)yr(-1) for N mineralisation in the conventional systems. The total economic value (including market and non-market components) was significantly greater in organic systems, ranging from US$ 1750-4536 ha(-1)yr(-1), with US$ 1585-2560 ha(-1)yr(-1) in the conventional systems. The non-market component of the economic value in organic fields was also significantly higher than those in conventional fields. Discussion. To illustrate the potential magnitude of these two ES to temperate farming systems and agricultural landscapes elsewhere, we then extrapolate these experimentally derived figures to the global temperate cropping area of the same arable crops. We found that the extrapolated net value of the these two services provided by non-traded species could exceed the combined current global costs of pesticide and fertiliser inputs, even if utilised on only 10% of the global arable area. This approach strengthens the case for ES-rich agricultural systems, provided by non-traded species to global agriculture.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4807  
Permanent link to this record
 

 
Author Mitter, H.; Heumesser, C.; Schmid, E. url  doi
openurl 
  Title Spatial modeling of robust crop production portfolios to assess agricultural vulnerability and adaptation to climate change Type Journal Article
  Year 2015 Publication Land Use Policy Abbreviated Journal Land Use Policy  
  Volume 46 Issue Pages 75-90  
  Keywords climate change impact; adaptation; agricultural vulnerability; portfolio optimization; agricultural policy; agri-environmental payment; adaptive capacity; change impacts; risk-aversion; land-use; ecosystem services; change scenarios; europe; policy; future; water  
  Abstract Agricultural vulnerability to climate change is likely to vary considerably between agro-environmental regions. Exemplified on Austrian cropland, we aim at (i) quantifying climate change impacts on agricultural vulnerability which is approximated by the indicators crop yields and gross margins, (ii) developing robust crop production portfolios for adaptation, and (iii) analyzing the effect of agricultural policies and risk aversion on the choice of crop production portfolios. We have employed a spatially explicit, integrated framework to assess agricultural vulnerability and adaptation. It combines a statistical climate change model for Austria and the period 2010-2040, a crop rotation model, the bio-physical process model EPIC (Environmental Policy Integrated Climate), and a portfolio optimization model. We find that under climate change, crop production portfolios include higher shares of intensive crop management practices, increasing average crop yields by 2-15% and expected gross margins by 3-18%, respectively. The results depend on the choice of adaptation measures and on the level of risk aversion and vary by region. In the semi-arid eastern parts of Austria, average dry matter crop yields are lower but gross margins are higher than in western Austria due to bio-physical and agronomic heterogeneities. An abolishment of decoupled farm payments and a threefold increase in agri-environmental premiums would reduce nitrogen inputs by 23-33%, but also crop yields and gross margins by 18-37%, on average. From a policy perspective, a twofold increase in agri-environmental premiums could effectively reduce the trade-offs between crop production and environmental impacts. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-8377 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4675  
Permanent link to this record
 

 
Author Sanz-Cobena, A.; García-Marco, S.; Quemada, M.; Gabriel, J.L.; Almendros, P.; Vallejo, A. doi  openurl
  Title Do cover crops enhance N2O, CO2 or CH4 emissions from soil in Mediterranean arable systems? Type Journal Article
  Year 2014 Publication Science of the Total Environment Abbreviated Journal Science of the Total Environment  
  Volume 466-467 Issue Pages 164-174  
  Keywords Agriculture/*methods; Air Pollutants/*metabolism; Brassica napus/growth & development/metabolism; Crops, Agricultural/growth & development/*metabolism; Gases/metabolism; Greenhouse Effect; Hordeum/growth & development/metabolism; Manure/*analysis; Nitrogen/metabolism; Nitrogen Dioxide/metabolism; Spain; Vicia/growth & development/metabolism; Zea mays/growth & development; Cover crops; GHG emissions; Green manure; Irrigation; Maize  
  Abstract This study evaluates the effect of planting three cover crops (CCs) (barley, Hordeum vulgare L.; vetch, Vicia villosa L.; rape, Brassica napus L.) on the direct emission of N(2)O, CO(2) and CH(4) in the intercrop period and the impact of incorporating these CCs on the emission of greenhouse gas (GHG) from the forthcoming irrigated maize (Zea mays L.) crop. Vetch and barley were the CCs with the highest N(2)O and CO(2) losses (75 and 47% increase compared with the control, respectively) in the fallow period. In all cases, fluxes of N(2)O were increased through N fertilization and the incorporation of barley and rape residues (40 and 17% increase, respectively). The combination of a high C:N ratio with the addition of an external source of mineral N increased the fluxes of N(2)O compared with -Ba and -Rp. The direct emissions of N(2)O were lower than expected for a fertilized crop (0.10% emission factor, EF) compared with other studies and the IPCC EF. These results are believed to be associated with a decreased NO(3)(-) pool due to highly denitrifying conditions and increased drainage. The fluxes of CO(2) were in the range of other fertilized crops (i.e., 1118.71-1736.52 kg CO(2)-Cha(-1)). The incorporation of CC residues enhanced soil respiration in the range of 21-28% for barley and rape although no significant differences between treatments were detected. Negative CH(4) fluxes were measured and displayed an overall sink effect for all incorporated CC (mean values of -0.12 and -0.10 kg CH(4)-Cha(-1) for plots with and without incorporated CCs, respectively).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4639  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: