toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; Sonnenborg, T.O.; Trolle, D.; Willems, P.; Christensen, J.H. url  doi
openurl 
  Title A framework for testing the ability of models to project climate change and its impacts Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 122 Issue 1-2 Pages 271-282  
  Keywords simulation-models; shallow lakes; predictions; calibration; ensembles; terminology; uncertainty; temperature; adaptation; validation  
  Abstract Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4688  
Permanent link to this record
 

 
Author Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. url  doi
openurl 
  Title Multifractal analysis of meteorological time series to assess climate impacts Type Journal Article
  Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 39-52  
  Keywords multifractal analysis; time series; agro-meteorological parameters; detrended fluctuation analysis; daily temperature records; catalonia ne spain; fractal analysis; river-basin; precipitation; variability; patterns; trends; china  
  Abstract Agro-meteorological quantities are often in the form of time series, and knowledge about their temporal scaling properties is fundamental for transferring locally measured fluctuations to larger scales and vice versa. However, the scaling analysis of these quantities is complicated due to the presence of localized trends and nonstationarities. The objective of this study was to characterise scaling properties (i.e. statistical self-similarity) of the chosen agro-meteorological quantities through multifractal detrended fluctuation analysis (MFDFA). For this purpose, MFDFA was performedwith 11 322 measured time series (31 yr) of daily air temperature, wind velocity, relative air humidity, global radiation and precipitation from stations located in Finland, Germany, Poland and Spain. The empirical singularity spectra indicated their multifractal structure. The richness of the studied multifractals was evaluated by the width of their spectrum, indicating considerable differences in dynamics and development. In log-log plots of the cumulative distributions of all meteorological parameters the linear functions prevailed for high values of the response, indicating that these distributions were consistent with power-law asymptotic behaviour. Additionally, we investigated the type of multifractality that underlies the q-dependence of the generalized Hurst exponent by analysing the corresponding shuffled and surrogate time series. For most of the studied meteorological parameters, the multifractality is due to different long-range correlations for small and large fluctuations. Only for precipitation does the multifractality result mainly from broad probability function. This feature may be especially valuable for assessing the effect of change in climate dynamics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4666  
Permanent link to this record
 

 
Author Rusu, T.; Moraru, P.I. url  openurl
  Title Impact of climate change on crop land and technological recommendations for the main crops in Transylvanian Plain, Romania Type Journal Article
  Year 2015 Publication Romanian Agricultural Research Abbreviated Journal Romanian Agricultural Research  
  Volume 32 Issue Pages 103-111  
  Keywords climate change monitoring; temperature regimes; soil moisture; adaptation technologies; transylvanian plain; agriculture; france; precipitation; circulation; adaptation; models  
  Abstract The Transylvanian Plain (TP) is an important agricultural production area of Romania that is included among the areas with the lowest potential of adapting to climate changes in Europe. Thermal and hydric regime monitoring is necessary to identify and implement measures of adaptation to the impacts of climate change. Soil moisture and temperature regimes were evaluated using a set of 20 data logging stations positioned throughout the plain. Each station stores electronic data regarding ground temperature at 3 depths (10, 30, 50 cm), humidity at a depth of 10 cm, air temperature (at 1 m) and precipitation. For agricultural crops, the periods of drought and extreme temperatures require specific measures of adaptation to climate changes. During the growing season of crops in the spring (April – October) in the south-eastern, southern, and eastern escarpments, precipitation decreased by 43.8 mm, the air temperature increased by 0.37 degrees C, and the ground temperature increased by 1.91 degrees C at a depth of 10 cm, 2.22 degrees C at a depth of 20 cm and 2.43 degrees C at a depth of 30 cm compared with values recorded for the northern, north-western or western escarpments. Water requirements were ensured within an optimal time frame for 58.8-62.1% of the spring row crop growth period, with irrigation being necessary to guarantee the optimum production potential. The biologically active temperature recorded in the TP demonstrates the need to renew the division of the crop areas reported in the literature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1222-4227 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4650  
Permanent link to this record
 

 
Author Vitali, A.; Lana, E.; Amadori, M.; Bernabucci, U.; Nardone, A.; Lacetera, N. url  doi
openurl 
  Title Analysis of factors associated with mortality of heavy slaughter pigs during transport and lairage Type Journal Article
  Year 2014 Publication Journal of Animal Science Abbreviated Journal J. Anim. Sci.  
  Volume 92 Issue 11 Pages 5134-5141  
  Keywords Abattoirs/*statistics & numerical data; Animals; *Data Interpretation, Statistical; Humidity/adverse effects; Light/adverse effects; *Mortality; Retrospective Studies; Seasons; Swine/*physiology; Temperature; Time Factors; Transportation/*statistics & numerical data; lairage; mortality; pigs; temperature-humidity index; transport  
  Abstract The study was based on data collected during 5 yr (2003-2007) and was aimed at assessing the effects of the month, slaughter house of destination (differing for stocking density, openings, brightness, and cooling device types), length of the journey, and temperature-humidity index (THI) on mortality of heavy slaughter pigs (approximately 160 kg live weight) during transport and lairage. Data were obtained from 24,098 journeys and 3,676,153 pigs transported from 1,618 farms to 3 slaughter houses. Individual shipments were the unit of observation. The terms dead on arrival (DOA) and dead in pen (DIP) refer to pigs that died during transport and in lairage at the abattoir before slaughtering, respectively. These 2 variables were assessed as the dependent counts in separate univariate Poisson regressions. The independent variables assessed univariately in each set of regressions were month of shipment, slaughter house of destination, time traveled, and each combination of the month with the time traveled. Two separate piecewise regressions were done. One used DOA counts within THI levels over pigs transported as a dependent ratio and the second used DIP counts within THI levels over pigs from a transport kept in lairage as a dependent ratio. The THI was the sole independent variable in each case. The month with the greatest frequency of deaths was July with a risk ratio of 1.22 (confidence interval: 1.06-1.36; P < 0.05) and 1.27 (confidence interval: 1.06-1.51; P < 0.05) for DOA and DIP, respectively. The lower mortality risk ratios for DOA and DIP were recorded for January and March (P < 0.05). The aggregated data of the summer (June, July, and August) versus non-summer (January, March, September, and November) months showed a greater risk of pigs dying during the hot season when considering both transport and lairage (P < 0.05). The mortality risk ratio of DIP was lower at the slaughter house with the lowest stocking density (0.64 m(2)/100 kg live weight), large open windows on the roof and sidewalls, low brightness (40 lx) lights, and high-pressure sprinklers as cooling devices. The mortality risk ratio of DOA increased significantly for journeys longer than 2 h, whereas no relationship was found between length of transport and DIP. The piecewise analysis pointed out that 78.5 and 73.6 THI were the thresholds above which the mortality rate increased significantly for DOA and DIP, respectively. These results may help the pig industry to improve the welfare of heavy slaughter pigs during transport and lairage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1525-3163 (Electronic) 0021-8812 (Linking) ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4641  
Permanent link to this record
 

 
Author Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R. url  openurl
  Title Soil temperature manipulation to study global warming effects in arable land: performance of buried heating-cable method Type Journal Article
  Year 2014 Publication Environment and Ecology Research Abbreviated Journal Environment and Ecology Research  
  Volume 1 Issue 4 Pages 196-204  
  Keywords Climate Change; Climate Manipulation; Soil Warming; Heating Cables; Soil Temperature; Agro-Ecosystems  
  Abstract Buried heating-cable method for manipulating soil temperature was designed and tested its performance in large concrete lysimeters grown with the wheat crop in Denmark. Soil temperature in heated plots was elevated by 5℃ compared with that in control by burying heating-cable at 0.1 m depth in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control plots at 0.1 m depth while the mean seasonal rise in soil temperature in the top 0.25 m depth (plough layer) was 3℃. Soil temperature in control plots froze (≤ 0℃) for 15 and 13 days respectively at 0.05 and 0.1 m depths while it did not in heated plots during the coldest period (Nov-Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4632  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: