toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R. url  openurl
  Title Soil temperature manipulation to study global warming effects in arable land: performance of buried heating-cable method Type Journal Article
  Year 2014 Publication Environment and Ecology Research Abbreviated Journal Environment and Ecology Research  
  Volume 1 Issue 4 Pages 196-204  
  Keywords Climate Change; Climate Manipulation; Soil Warming; Heating Cables; Soil Temperature; Agro-Ecosystems  
  Abstract Buried heating-cable method for manipulating soil temperature was designed and tested its performance in large concrete lysimeters grown with the wheat crop in Denmark. Soil temperature in heated plots was elevated by 5℃ compared with that in control by burying heating-cable at 0.1 m depth in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control plots at 0.1 m depth while the mean seasonal rise in soil temperature in the top 0.25 m depth (plough layer) was 3℃. Soil temperature in control plots froze (≤ 0℃) for 15 and 13 days respectively at 0.05 and 0.1 m depths while it did not in heated plots during the coldest period (Nov-Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4632  
Permanent link to this record
 

 
Author Lipiec, J.; Doussan, C.; Nosalewicz, A.; Kondracka, K. doi  openurl
  Title Effect of drought and heat stresses on plant growth and yield: a review Type Journal Article
  Year 2013 Publication International Agrophysics Abbreviated Journal International Agrophysics  
  Volume 27 Issue 4 Pages 463-477  
  Keywords water stress; high temperature; root and shoot; growth; tolerance mechanisms; management practices; water-use efficiency; soil physical-properties; abscisic-acid; high-temperature; root systems; hydraulic architecture; conservation tillage; photosystem-ii; l. genotypes; drying soil  
  Abstract Drought and heat stresses are important threat limitations to plant growth and sustainable agriculture worldwide. Our objective is to provide a review of plant responses and adaptations to drought and elevated temperature including roots, shoots, and final yield and management approaches for alleviating adverse effects of the stresses based mostly on recent literature. The sections of the paper deal with plant responses including root growth, transpiration, photosynthesis, water use efficiency, phenotypic flexibility, accumulation of compounds of low molecular mass (eg proline and gibberellins), and expression of some genes and proteins for increasing the tolerance to the abiotic stresses. Soil and crop management practices to alleviate negative effects of drought and heat stresses are also discussed. Investigations involving determination of plant assimilate partitioning, phenotypic plasticity, and identification of most stress- tolerant plant genotypes are essential for understanding the complexity of the responses and for future plant breeding. The adverse effects of drought and heat stress can be mitigated by soil management practices, crop establishment, and foliar application of growth regulators by maintaining an appropriate level of water in the leaves due to osmotic adjustment and stomatal performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0236-8722 ISBN Medium Review  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4608  
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Fumagalli, M.; Sanna, M.; Chiodini, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title Crop rotation, fertilizer types and application timing affecting nitrogen leaching in nitrate vulnerable zones in Po Valley Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue 2 Pages 39-50  
  Keywords nitrogen fertilization; crop simulation model; nitrate leaching; crop rotation; reduce ammonia losses; 4 cultivation systems; mineral nitrogen; maize; soil; slurry; simulation; model; water; groundwater  
  Abstract A critical analysis was performed to evaluate the potential risk of nitrate leaching towards groundwater in three Nitrate Vulnerable Zones (NVZs) of the Lombardia plain by applying the ARMOSA crop simulation model over a 20 years period (1988-2007). Each studied area was characterized by (i) two representative soil types, (ii) a meteorological data set, (iii) four crop rotations according to the regional land use, (iv) organic N load, calculated on the basis of livestock density. We simulated 3 scenarios defined by different fertilization time and amount of mineral and organic fertilizers. The A scenario involved no limitation in organic N application, while under the B and C scenarios the N organic amount was 170 and 250 kg N ha(-1)y(-1), respectively. The C scenario was compliant with the requirement of the 2012 Italian derogation, allowing only the use of organic manure with an efficiency greater than 65%. The model results highlighted that nitrate leaching was significantly reduced passing from the A scenario to the B and C ones (p<0.01); on average nitrogen losses decreased by up to 53% from A to B and up to 75% from A to C.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4611  
Permanent link to this record
 

 
Author Perego, A.; Giussani, A.; Sanna, M.; Fumagalli, M.; Carozzi, M.; Alfieri, L.; Brenna, S.; Acutis, M. openurl 
  Title The ARMOSA simulation crop model: overall features, calibration and validation results Type Journal Article
  Year 2013 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 3 Issue Pages 23-38  
  Keywords simulation model; crop growth; water dynamics; nitrogen leaching; performance assessment; nitrogen dilution curve; field-scale; soil; systems; maize; water; dynamics; growth; winter; evaporation  
  Abstract ARMOSA is a dynamic simulation model which was developed to simulate crop growth and development, water and nitrogen dynamics under different pedoclimatic conditions and cropping systems in the arable land. The model is meant to be a tool for the evaluation of the impact of different crop management practices on soil nitrogen and carbon cycles and groundwater nitrate pollution. A large data set collected over three to six years from six monitoring sites in Lombardia plain was used to calibrate and validate the model parameters. Measured meteorological data, soil chemical and physical characterizations, crop-related data of different cropping systems allowed for a proper parameterization. Fit indexes showed the reliability of the model in adequately predicting crop-related variables, such as above ground biomass (RRMSE=11.18, EF=0.94, r=0.97), Leaf Area Index maximum value (RRMSE=8.24, EF=0.37, r=0.72), harvest index (RRMSE=19.4, EF=0.32, r=0.74), and crop N uptake (RRMSE=20.25, EF=0.69, r=0.85). Using two different one-year data set from each monitoring site, the model was calibrated and validated, getting to encouraging results: RRMSE=6.28, EF=0.52, r=0.68 for soil water content at different depths, and RRMSE=34.89, EF=0.59, r=0.75 for soil NO3-N content along soil profile. The simulated N leaching was in full agreement with measured data (RRMSE=26.62, EF=0.88, r=0.98).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2038-5625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4612  
Permanent link to this record
 

 
Author Özkan, Ş.; Hill, J. url  doi
openurl 
  Title Implementing innovative farm management practices on dairy farms:a review of feeding systems Type Journal Article
  Year 2015 Publication Turkish Journal of Veterinary and Animal Sciences Abbreviated Journal Turkish Journal of Veterinary and Animal Sciences  
  Volume 39 Issue Pages 1-9  
  Keywords australia; dairy; double-cropping; feeding system; pasture-based; profitability; forage crop systems; south-west victoria; nutritive characteristics; interannual variation; botanical composition; herbage accumulation; growth-rates; pasture; australia; cows  
  Abstract The Australian dairy industry relies primarily on pasture for its feed supply. However, the variability in rainfall negatively affects plant growth, leading to uncertainty in dryland feed supply, especially during periods of high milk price. New feeding (complementary) systems combining perennial ryegrass with another crop and/or pasture species may have the potential to mitigate this seasonal risk and improve productivity and profitability by providing off-season feed. To date, the majority of research studying the integration of alternative crops into pasture-based systems has focused on substitution and utilization of alternative feed sources. There has been little emphasis on the impacts of integration of forage crops into pasture-based systems. This review focuses on pasture-based feeding systems in southeastern Australia and how transitioning of systems contributes to improved productivity leading to improved profitability for dairy farmers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1300-0128 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4577  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: