toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lai, R.; Arca, P.; Lagomarsino, A.; Cappai, C.; Seddaiu, G.; Demurtas, C.E.; Roggero, P.P. doi  openurl
  Title Manure fertilization increases soil respiration and creates a negative carbon budget in a Mediterranean maize (Zea mays L.)-based cropping system Type Journal Article
  Year 2017 Publication Catena Abbreviated Journal Catena  
  Volume 151 Issue Pages (down) 202-212  
  Keywords Biomass; C turnover; GHG emission; Microbial activity; Soil moisture; Organic-Matter Dynamics; Co2 Efflux; N Fertilization; Forage Systems; Winter-Wheat; Nitrogen; Temperature; Forest; Water; Root  
  Abstract Agronomic research is important to identify suitable options for improving soil carbon (C) sequestration and reducing soil CO2 emissions. Therefore, the objectives of this study were i) to analyse the on-farm effects of different nitrogen fertilization sources on soil respiration, ii) to explore the effect of fertilization on soil respiration sensitivity to soil temperature (T) and iii) to assess the effect of the different fertilization regimes on the soil C balance. We hypothesized that i) the soil CO2 emission dynamics in Mediterranean irrigated cropping systems were mainly affected by fertilization management and T and ii) fertilization affected the soil C budget via different C inputs and CO2 efflux. Four fertilization systems (farmyard manure, cattle slurry, cattle slurry + mineral, and mineral) were compared in a double-crop rotation based on silage maize (Zea mays L) and a mixture of Italian ryegrass (Lolium multiflorum Lam.) and oats (Avena sativa L). The research was performed in the dairy district of Arborea, in the coastal zone of Sardinia (Italy), from May 2011 to May 2012. The soil was a Psammentic Palexeralfs with a sandy texture (940 g sand kg(-1)). The soil total respiration (SR), heterotrophic respiration (Rh), T and soil water content (SWC) were simultaneously measured in situ. The soil C balance was computed considering the Rh C losses and the soil C inputs from fertilizer and crop residues. The results showed that the maximum soil CO2 emission rates soon after the application of organic fertilizer reached values up to 121,1111 1 111(-2) s(-1). On average, the manure fertilizer showed significantly higher CO2 emissions, which resulted in a negative annual C balance (-2.9 t ha(-1)). T also affected the soil respiration temporal dynamics during the summer, consistently with results obtained in other temperate climatic regions that are characterized by wet summers and contrary to results from rainfed Mediterranean systems where the summer SR and Rh are constrained by the low SWC. The sensitivity of soil respiration to temperature significantly increased with C input from fertilizer. In conclusion, this research supported the hypotheses tested. Furthermore, the results indicated that i) soil CO2 efflux was significantly affected by fertilization management and T, and ii) fertilization with manure increased the soil respiration and resulted in a significantly negative soil C budget. This latter finding could be primarily explained by a reduction in productivity and, consequently, in crop residue with organic fertilization alone as compared to mineral, by the favourable SWC and T for mineralization, and by the sandy soil texture, which hindered the formation of macroaggregates and hence soil C stabilization, making fertilizer organic inputs highly susceptible to mineralization. (C) 2016 Elsevier B.V. All rights reserved.  
  Address 2017-03-16  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0341-8162 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_MACSUR Approved no  
  Call Number MA @ admin @ Serial 4939  
Permanent link to this record
 

 
Author Patil, R.H.; Laegdsmand, M.; Olesen, J.E.; Porter, J.R. url  openurl
  Title Soil temperature manipulation to study global warming effects in arable land: performance of buried heating-cable method Type Journal Article
  Year 2014 Publication Environment and Ecology Research Abbreviated Journal Environment and Ecology Research  
  Volume 1 Issue 4 Pages (down) 196-204  
  Keywords Climate Change; Climate Manipulation; Soil Warming; Heating Cables; Soil Temperature; Agro-Ecosystems  
  Abstract Buried heating-cable method for manipulating soil temperature was designed and tested its performance in large concrete lysimeters grown with the wheat crop in Denmark. Soil temperature in heated plots was elevated by 5℃ compared with that in control by burying heating-cable at 0.1 m depth in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control plots at 0.1 m depth while the mean seasonal rise in soil temperature in the top 0.25 m depth (plough layer) was 3℃. Soil temperature in control plots froze (≤ 0℃) for 15 and 13 days respectively at 0.05 and 0.1 m depths while it did not in heated plots during the coldest period (Nov-Apr). This study clearly showed the efficacy of buried heating-cable technique in simulating soil temperature, and thus offers a simple, effective and alternative technique to study soil biogeochemical processes under warmer climates. This technique, however, decouples below-ground soil responses from that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4632  
Permanent link to this record
 

 
Author Ventrella, D.; Stellacci, A.M.; Castrignanò, A.; Charfeddine, M.; Castellini, M. url  doi
openurl 
  Title Effects of crop residue management on winter durum wheat productivity in a long term experiment in Southern Italy Type Journal Article
  Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 77 Issue Pages (down) 188-198  
  Keywords Crop residue incorporation; Crop residue burning; Residual; autocorrelation; Mixed models; soil organic-matter; straw management; yield patterns; use efficiency; grain-yield; nitrogen; quality; systems; rotation; tillage  
  Abstract A long-term experiment comparing different crop residue (CR) managements was established in 1977 in Foggia (Apulia region, southern Italy). The objective of this study was to investigate the long-term effects of different types of crop residue management on main yield response parameters in a continuous cropping system of winter durum wheat. In order to correctly interpret the results, models accounting for spatial error autocorrelation were used and compared with ordinary least square models. Eight crop residue management treatments, based on burning of wheat straw and stubble or their incorporation with or without N fertilization and irrigation, were compared. The experimental design was a complete randomized block with five replicates. Results indicated that the dynamics of yield, grain protein content and hectolitric weight of winter durum wheat did not show any decline as usually expected when a monoculture is carried out for a long time. In addition, the temporal variability of productivity was more affected by meteorological factors, such as air temperature and rainfall, than CR management treatments. Higher wheat grain yields and hectolitric weights quite frequently occurred after burning of wheat straw compared with straw incorporation without nitrogen fertilization and autumn irrigation and this was attributed to temporary mineral N immobilization in the soil. The rate of 50 kg ha(-1) of N seemed to counterbalance this negative effect when good condition of soil moisture occurred in the autumn period, so yielding the same productive level of straw burning treatment. (C) 2016 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4770  
Permanent link to this record
 

 
Author Kahiluoto, H.; Kaseva, J.; Hakala, K.; Himanen, S.J.; Jauhiainen, L.; Rötter, R.P.; Salo, T.; Trnka, M. url  doi
openurl 
  Title Cultivating resilience by empirically revealing response diversity Type Journal Article
  Year 2014 Publication Global Environmental Change Abbreviated Journal Glob. Environ. Change  
  Volume 25 Issue Pages (down) 186-193  
  Keywords generic approach; climate change; food security; agrifood systems; cultivars; adaptive capacity; climate-change; functional diversity; plant-communities; genetic diversity; biodiversity; ecosystems; management; redundancy; evenness; weather  
  Abstract Intensified climate and market turbulence requires resilience to a multitude of changes. Diversity reduces the sensitivity to disturbance and fosters the capacity to adapt to various future scenarios. What really matters is diversity of responses. Despite appeals to manage resilience, conceptual developments have not yet yielded a break-through in empirical applications. Here, we present an approach to empirically reveal the ‘response diversity’: the factors of change that are critical to a system are identified, and the response diversity is determined based on the documented component responses to these factors. We illustrate this approach and its added value using an example of securing food supply in the face of climate variability and change. This example demonstrates that quantifying response diversity allows for a new perspective: despite continued increase in cultivar diversity of barley, the diversity in responses to weather declined during the last decade in the regions where most of the barley is grown in Finland. This was due to greater homogeneity in responses among new cultivars than among older ones. Such a decline in the response diversity indicates increased vulnerability and reduced resilience. The assessment serves adaptive management in the face of both ecological and socioeconomic drivers. Supplier diversity in the food retail industry in order to secure affordable food in spite of global price volatility could represent another application. The approach is, indeed, applicable to any system for which it is possible to adopt empirical information regarding the response by its components to the critical factors of variability and change. Targeting diversification in response to critical change brings efficiency into diversity. We propose the generic procedure that is demonstrated in this study as a means to efficiently enhance resilience at multiple levels of agrifood systems and beyond. (C) 2014 The Authors. Published by Elsevier Ltd.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0959-3780 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4525  
Permanent link to this record
 

 
Author Dono, G.; Raffaele, C.; Luca, G.; Roggero, P.P. openurl 
  Title Income Impacts of Climate Change: Irrigated Farming in the Mediterranean and Expected Changes in Probability of Favorable and Adverse Weather Conditions Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages (down) 177-186  
  Keywords discrete stochastic programming; rdp measures to adapt to climate change; economic impact of climate change; irrigated agriculture and climate change; insurance tools for adaptation to climate change; water markets; risk; variability; management; systems  
  Abstract EU rural development policy (RDP) regulation 1305/2013 aims to protect farmers’ incomes from ongoing change of climate variability (CCV), and the increase in frequency of adverse climatic events. An income stabilization tool (IST) is provided to compensate drastic drops in income, including those caused by climatic events. The present study examines some aspect of its application focussing on Mediterranean irrigation area where frequent water shortages may generate significant income reductions in the current climate conditions, and may be further exacerbated by climate change. This enhanced loss of income in the future would occur due to a change in climate variability. This change would appreciably reduce the probability of weather conditions that are favourable for irrigation, but would not significantly increase either the probability of unfavourable weather conditions or the magnitude of their impact. As the IST and other insurance tools that protect against adversity and catastrophic events are only activated under extreme conditions, farmers may not consider them to be suitable in dealing with the new climate regime. This would leave a portion of the financial resources allocated by the RDP unused, resulting in less support for climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1121 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4669  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: