toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sanna, M.; Bellocchi, G.; Fumagalli, M.; Acutis, M. url  doi
openurl 
  Title A new method for analysing the interrelationship between performance indicators with an application to agrometeorological models Type Journal Article
  Year (down) 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 73 Issue Pages 286-304  
  Keywords model evaluation; performance indicators; stable correlation; solar-radiation; simulation-model; environmental-models; statistical-methods; crop nitrogen; validation; rice; uncertainty; calibration; software  
  Abstract The use of a variety of metrics is advocated to assess model performance but correlated metrics may convey the same information, thus leading to redundancy. Starting from this assumption, a method was developed for selecting, from among a collection of performance indicators, one or more subsets providing the same information as the entire set. The method, based on the definition of “stable correlation”, was applied to 23 performance indicators of agrometeorological models, calculated on large sets of simulated and observed data of four agronomic and meteorological variables: above-ground biomass, leaf area index, hourly air relative humidity and daily solar radiation. Two subsets were determined: {Squared Bias, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index, Modified Modelling Efficiency}, {Persistence Model Efficiency, Root Mean Squared Relative Error, Coefficient of Determination, Pattern Index}. The method needs corroboration but is statistically founded and can support the implementation of standardized evaluation tools. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM LiveM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4503  
Permanent link to this record
 

 
Author Siebert, S.; Ewert, F. url  doi
openurl 
  Title Future crop production threatened by extreme heat Type Journal Article
  Year (down) 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 4 Pages  
  Keywords climate-change; simulation-models; wheat yields; day length; temperature; growth; impact; co2; phenology; patterns  
  Abstract Heat is considered to be a major stress limiting crop growth and yields. While important findings on the impact of heat on crop yield have been made based on experiments in controlled environments, little is known about the effects under field conditions at larger scales. The study of Deryng et al (2014 Global crop yield response to extreme heat stress under multiple climate change futures Environ. Res. Lett. 9 034011), analysing the impact of heat stress on maize, spring wheat and soya bean under climate change, represents an important contribution to this emerging research field. Uncertainties in the occurrence of heat stress under field conditions, plant responses to heat and appropriate adaptation measures still need further investigation.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4813  
Permanent link to this record
 

 
Author Refsgaard, J.C.; Madsen, H.; Andréassian, V.; Arnbjerg-Nielsen, K.; Davidson, T.A.; Drews, M.; Hamilton, D.P.; Jeppesen, E.; Kjellström, E.; Olesen, J.E.; Sonnenborg, T.O.; Trolle, D.; Willems, P.; Christensen, J.H. url  doi
openurl 
  Title A framework for testing the ability of models to project climate change and its impacts Type Journal Article
  Year (down) 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 122 Issue 1-2 Pages 271-282  
  Keywords simulation-models; shallow lakes; predictions; calibration; ensembles; terminology; uncertainty; temperature; adaptation; validation  
  Abstract Models used for climate change impact projections are typically not tested for simulation beyond current climate conditions. Since we have no data truly reflecting future conditions, a key challenge in this respect is to rigorously test models using proxies of future conditions. This paper presents a validation framework and guiding principles applicable across earth science disciplines for testing the capability of models to project future climate change and its impacts. Model test schemes comprising split-sample tests, differential split-sample tests and proxy site tests are discussed in relation to their application for projections by use of single models, ensemble modelling and space-time-substitution and in relation to use of different data from historical time series, paleo data and controlled experiments. We recommend that differential-split sample tests should be performed with best available proxy data in order to build further confidence in model projections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4688  
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. url  doi
openurl 
  Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
  Year (down) 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 47-56  
  Keywords simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield  
  Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4631  
Permanent link to this record
 

 
Author Dumont, B.; Leemans, V.; Ferrandis, S.; Bodson, B.; Destain, J.-P.; Destain, M.-F. url  doi
openurl 
  Title Assessing the potential of an algorithm based on mean climatic data to predict wheat yield Type Journal Article
  Year (down) 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.  
  Volume 15 Issue 3 Pages 255-272  
  Keywords stics model; yield prediction; real-time; proxy-sensing; stochastic weather generator; crop yield; mediterranean environment; simulation-model; variability; nitrogen; ensembles; forecasts; demeter; europe  
  Abstract The real-time non-invasive determination of crop biomass and yield prediction is one of the major challenges in agriculture. An interesting approach lies in using process-based crop yield models in combination with real-time monitoring of the input climatic data of these models, but unknown future weather remains the main obstacle to reliable yield prediction. Since accurate weather forecasts can be made only a short time in advance, much information can be derived from analyzing past weather data. This paper presents a methodology that addresses the problem of unknown future weather by using a daily mean climatic database, based exclusively on available past measurements. It involves building climate matrix ensembles, combining different time ranges of projected mean climate data and real measured weather data originating from the historical database or from real-time measurements performed in the field. Used as an input for the STICS crop model, the datasets thus computed were used to perform statistical within-season biomass and yield prediction. This work demonstrated that a reliable predictive delay of 3-4 weeks could be obtained. In combination with a local micrometeorological station that monitors climate data in real-time, the approach also enabled us to (i) predict potential yield at the local level, (ii) detect stress occurrence and (iii) quantify yield loss (or gain) drawing on real monitored climatic conditions of the previous few days.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1385-2256 1573-1618 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: