toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sakschewski, B.; von Bloh, W.; Huber, V.; Müller, C.; Bondeau, A. url  doi
openurl 
  Title Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems Type Journal Article
  Year 2014 Publication Ecological Modelling Abbreviated Journal Ecol. Model.  
  Volume 288 Issue Pages 103-111  
  Keywords Population growth; Food production; Dynamic global vegetation model; Climate change; LPJmL; stomatal conductance; population-growth; food-production; co2; enrichment; model; photosynthesis; scenarios; leaves; plants; yield  
  Abstract The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4806  
Permanent link to this record
 

 
Author Reidsma, P.; Wolf, J.; Kanellopoulos, A.; Schaap, B.F.; Mandryk, M.; Verhagen, J.; van Ittersum, M.K. url  doi
openurl 
  Title Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands Type Journal Article
  Year 2015 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 10 Issue 4 Pages 045004  
  Keywords climate change adaptation; scenario; farm diversity; crop simulation; bio-economic farm modelling; european-union; crop yields; agriculture; responses; models; wheat; variability; improvement; strategies; scenarios  
  Abstract Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semiquantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4800  
Permanent link to this record
 

 
Author Wolf, J.; Kanellopoulos, A.; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; de Vries, W. url  doi
openurl 
  Title Combined analysis of climate, technological and price changes on future arable farming systems in Europe Type Journal Article
  Year 2015 Publication Agricultural Systems Abbreviated Journal Agricultural Systems  
  Volume 140 Issue Pages 56-73  
  Keywords agriculture; capri; climate change; environmental impact; farming system; fssim; integrated assessment; integrator; model linkage; n emission; price change; scenarios; simplace; technological change; crop simulation-models; agricultural land-use; integrated assessment; growth; strategies; nitrogen; soils; environment; scenarios; emissions  
  Abstract In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable crops; the CAPRI model to estimate impacts on global agricultural markets, specifically product prices; the bio-economic farm model FSSIM to calculate the future changes in cropping patterns and farm net income at the farm and regional level; and the environmental model INTEGRATOR to calculate nitrogen (N) uptake and losses to air and water. First, the four linked models were applied to analyse the effect of climate change only or a most likely baseline (i.e. B1) scenario for 2050 as well as for two alternative scenarios with, respectively, strong (i.e. A1-b1) and weak economic growth (B2) for five regions/countries across Europe (i.e. Denmark, Flevoland, Midi Pyrenees, Zachodniopomorsld and Andalucia). These analyses Were repeated but assuming in addition to climate change impacts, also the effects of changes in technology and management on crop yields, the effects of changes in prices and policies in 2050, and the effects of all factors together. The outcomes show that the effects of climate change to 2050 result in higher farm net incomes in the Northern and Northern-Central EU regions, in practically unchanged farm net incomes in the Central and Central-Southern EU regions, and in much lower farm net incomes in Southern EU regions compared to those in the base year. Climate change in combination with improved technology and farm management and/or with price changes towards 2050 results in a higher to much higher farm net incomes. Increases in farm net income for the B1 and A1-b1 scenarios are moderately stronger than those for the B2 scenario, due to the smaller increases in product prices and/or yields for the B2 scenario. Farm labour demand slightly to moderately increases towards 2050 as related to changes in cropping patterns. Changes in N2O emissions and N leaching compared to the base year are mainly caused by changes in total N inputs from the applied fertilizers and animal manure, which in turn are influenced by changes in crop yields and cropping patterns, whereas NH3 emissions are mainly determined by assumed improvements in manure application techniques. N emissions and N leaching strongly increase in Denmark and Zachodniopomorski, slightly decrease to moderately increase in Flevoland and Midi-Pyrenees, and strongly decrease in Andalucia, except for NH3 emissions which zero to moderately decrease in Flevoland and Denmark. (C) 2015 Elsevier Ltd. All tights reserved.  
  Address 2015-10-12  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4703  
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O. url  doi
openurl 
  Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
  Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy  
  Volume 52 Issue Pages 47-56  
  Keywords simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield  
  Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4631  
Permanent link to this record
 

 
Author Eitzinger, J.; Thaler, S.; Schmid, E.; Strauss, F.; Ferrise, R.; Moriondo, M.; Bindi, M.; Palosuo, T.; Rotter, R.; Kersebaum, K.C.; Olesen, J.E.; Patil, R.H.; Saylan, L.; Caldag, B.; Caylak, O. doi  openurl
  Title Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria Type Journal Article
  Year 2013 Publication Journal of Agricultural Science Abbreviated Journal J. Agric. Sci.  
  Volume 151 Issue 6 Pages 813-835  
  Keywords simulate yield response; climate-change scenarios; central-europe; nitrogen dynamics; high-temperature; future climate; elevated co2; soil; growth; variability  
  Abstract The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8596 ISBN Medium Article  
  Area Expedition Conference  
  Notes (up) CropM Approved no  
  Call Number MA @ admin @ Serial 4601  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: