toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Milford, A.B.; Le Mouel, C.; Bodirsky, B.L.; Rolinski, S. doi  openurl
  Title Drivers of meat consumption Type Journal Article
  Year 2019 Publication Appetite Abbreviated Journal Appetite  
  Volume 141 Issue Pages Unsp 104313  
  Keywords Meat consumption; Nutrition transition; Climate change mitigation; Cross-country analysis; nutrition transition; food; sustainability; globalization; countries; future; health; income; price  
  Abstract Increasing global levels of meat consumption are a threat to the environment and to human health. To identify measures that may change consumption patterns towards more plant-based foods, it is necessary to improve our understanding of the causes behind the demand for meat. In this paper we use data from 137 different countries to identify and assess factors that influence meat consumption at the national level using a cross-country multivariate regression analysis. We specify either total meat or ruminant meat as the dependent variable and we consider a broad range of potential drivers of meat consumption. The combination of explanatory variables we use is new for this type of analysis. In addition, we estimate the relative importance of the different drivers. We find that income per capita followed by rate of urbanisation are the two most important drivers of total meat consumption per capita. Income per capita and natural endowment factors are major drivers of ruminant meat consumption per capita. Other drivers are Western culture, Muslim religion, female labour participation, economic and social globalisation and meat prices. The main identified drivers of meat demand are difficult to influence through direct policy intervention. Thus, acting indirectly on consumers’ preferences and consumption habits (for instance through information, education policy and increased availability of ready-made plant based products) could be of key importance for mitigating the rise of meat consumption per capita all over the world.  
  Address 2020-02-14  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0195-6663 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5224  
Permanent link to this record
 

 
Author Tao, F.; Palosuo, T.; Roetter, R.P.; Hernandez Diaz-Ambrona, C.G.; Ines Minguez, M.; Semenov, M.A.; Kersebaum, K.C.; Cammarano, D.; Specka, X.; Nendel, C.; Srivastava, A.K.; Ewert, F.; Padovan, G.; Ferrise, R.; Martre, P.; Rodriguez, L.; Ruiz-Ramos, M.; Gaiser, T.; Hohn, J.G.; Salo, T.; Dibari, C.; Schulman, A.H. doi  openurl
  Title Why do crop models diverge substantially in climate impact projections? A comprehensive analysis based on eight barley crop models Type Journal Article
  Year 2020 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 281 Issue Pages 107851  
  Keywords agriculture; climate change; crop growth simulation; impact; model; improvement; uncertainty; air CO2 enrichment; elevated CO2; wheat growth; nitrogen dynamics; simulation-models; field experiment; atmospheric CO2; rice phenology; temperature; uncertainty  
  Abstract Robust projections of climate impact on crop growth and productivity by crop models are key to designing effective adaptations to cope with future climate risk. However, current crop models diverge strongly in their climate impact projections. Previous studies tried to compare or improve crop models regarding the impact of one single climate variable. However, this approach is insufficient, considering that crop growth and yield are affected by the interactive impacts of multiple climate change factors and multiple interrelated biophysical processes. Here, a new comprehensive analysis was conducted to look holistically at the reasons why crop models diverge substantially in climate impact projections and to investigate which biophysical processes and knowledge gaps are key factors affecting this uncertainty and should be given the highest priorities for improvement. First, eight barley models and eight climate projections for the 2050s were applied to investigate the uncertainty from crop model structure in climate impact projections for barley growth and yield at two sites: Jokioinen, Finland (Boreal) and Lleida, Spain (Mediterranean). Sensitivity analyses were then conducted on the responses of major crop processes to major climatic variables including temperature, precipitation, irradiation, and CO2, as well as their interactions, for each of the eight crop models. The results showed that the temperature and CO2 relationships in the models were the major sources of the large discrepancies among the models in climate impact projections. In particular, the impacts of increases in temperature and CO2 on leaf area development were identified as the major causes for the large uncertainty in simulating changes in evapotranspiration, above-ground biomass, and grain yield. Our findings highlight that advancements in understanding the basic processes and thresholds by which climate warming and CO2 increases will affect leaf area development, crop evapotranspiration, photosynthesis, and grain formation in contrasting environments are needed for modeling their impacts.  
  Address 2020-06-08  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5232  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: