toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fronzek, S.; Pirttioja, N.; Carter, T.R.; Bindi, M.; Hoffmann, H.; Palosuo, T.; Ruiz-Ramos, M.; Tao, F.; Trnka, M.; Acutis, M.; Asseng, S.; Baranowski, P.; Basso, B.; Bodin, P.; Buis, S.; Cammarano, D.; Deligios, P.; Destain, M.-F.; Dumont, B.; Ewert, F.; Ferrise, R.; Francois, L.; Gaiser, T.; Hlavinka, P.; Jacquemin, I.; Kersebaum, K.C.; Kollas, C.; Krzyszczaki, J.; Lorite, I.J.; Minet, J.; Ines Minguez, M.; Montesino, M.; Moriondo, M.; Mueller, C.; Nendel, C.; Ozturk, I.; Perego, A.; Rodriguez, A.; Ruane, A.C.; Ruget, F.; Sanna, M.; Semenov, M.A.; Slawinski, C.; Stratonovitch, P.; Supit, I.; Waha, K.; Wang, E.; Wu, L.; Zhao, Z.; Rotter, R.P. doi  openurl
  Title Classifying multi-model wheat yield impact response surfaces showing sensitivity to temperature and precipitation change Type Journal Article
  Year 2018 Publication (up) Agricultural Systems Abbreviated Journal Agric. Syst.  
  Volume 159 Issue Pages 209-224  
  Keywords Classification; Climate change; Crop model; Ensemble; Sensitivity analysis; Wheat; Climate-Change; Crop Models; Probabilistic Assessment; Simulating; Impacts; British Catchments; Uncertainty; Europe; Productivity; Calibration; Adaptation  
  Abstract Crop growth simulation models can differ greatly in their treatment of key processes and hence in their response to environmental conditions. Here, we used an ensemble of 26 process-based wheat models applied at sites across a European transect to compare their sensitivity to changes in temperature (-2 to +9 degrees C) and precipitation (-50 to +50%). Model results were analysed by plotting them as impact response surfaces (IRSs), classifying the IRS patterns of individual model simulations, describing these classes and analysing factors that may explain the major differences in model responses. The model ensemble was used to simulate yields of winter and spring wheat at four sites in Finland, Germany and Spain. Results were plotted as IRSs that show changes in yields relative to the baseline with respect to temperature and precipitation. IRSs of 30-year means and selected extreme years were classified using two approaches describing their pattern. The expert diagnostic approach (EDA) combines two aspects of IRS patterns: location of the maximum yield (nine classes) and strength of the yield response with respect to climate (four classes), resulting in a total of 36 combined classes defined using criteria pre-specified by experts. The statistical diagnostic approach (SDA) groups IRSs by comparing their pattern and magnitude, without attempting to interpret these features. It applies a hierarchical clustering method, grouping response patterns using a distance metric that combines the spatial correlation and Euclidian distance between IRS pairs. The two approaches were used to investigate whether different patterns of yield response could be related to different properties of the crop models, specifically their genealogy, calibration and process description. Although no single model property across a large model ensemble was found to explain the integrated yield response to temperature and precipitation perturbations, the application of the EDA and SDA approaches revealed their capability to distinguish: (i) stronger yield responses to precipitation for winter wheat than spring wheat; (ii) differing strengths of response to climate changes for years with anomalous weather conditions compared to period-average conditions; (iii) the influence of site conditions on yield patterns; (iv) similarities in IRS patterns among models with related genealogy; (v) similarities in IRS patterns for models with simpler process descriptions of root growth and water uptake compared to those with more complex descriptions; and (vi) a closer correspondence of IRS patterns in models using partitioning schemes to represent yield formation than in those using a harvest index. Such results can inform future crop modelling studies that seek to exploit the diversity of multi-model ensembles, by distinguishing ensemble members that span a wide range of responses as well as those that display implausible behaviour or strong mutual similarities.  
  Address 2018-01-25  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-521x ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5186  
Permanent link to this record
 

 
Author Lorite, I.J.; Gabaldon-Leal, C.; Ruiz-Ramos, M.; Belaj, A.; de la Rosa, R.; Leon, L.; Santos, C. doi  openurl
  Title Evaluation of olive response and adaptation strategies to climate change under semi-arid conditions Type Journal Article
  Year 2018 Publication (up) Agricultural Water Management Abbreviated Journal Agric. Water Manage.  
  Volume 204 Issue Pages 247-261  
  Keywords Irrigation requirements; Yield; Irrigation water productivity; Olive; Climate change; Olea-Europaea L.; Different Irrigation Regimes; Water Deficits; Iberian; Peninsula; CO2 Concentration; Potential Growth; Atmospheric CO2; Southern Spain; Change Impacts; River-Basin  
  Abstract AdaptaOlive is a simplified physically-based model that has been developed to assess the behavior of olive under future climate conditions in Andalusia, southern Spain. The integration of different approaches based on experimental data from previous studies, combined with weather data from 11 climate models, is aimed at overcoming the high degree of uncertainty in the simulation of the response of agricultural systems under predicted climate conditions. The AdaptaOlive model was applied in a representative olive orchard in the Baeza area, one of the main producer zone in Spain, with the cultivar ‘Picual’. Simulations for the end of the 21st century showed olive oil yield increases of 7.1 and 28.9% under rainfed and full irrigated conditions, respectively, while irrigation requirements decreased between 0.5 and 6.2% for full irrigation and regulated deficit irrigation, respectively. These effects were caused by the positive impact of the increase in atmospheric CO2 that counterbalanced the negative impacts of the reduction in rainfall. The high degree of uncertainty associated with climate projections translated into a high range of yield and irrigation requirement projections, confirming the need for an ensemble of climate models in climate change impact assessment. The AdaptaOlive model also was applied for evaluating adaptation strategies related to cultivars, irrigation strategies and locations. The best performance was registered for cultivars with early flowering dates and regulated deficit irrigation. Thus, in the Baeza area full irrigation requirements were reduced by 12% and the yield in rainfed conditions increased by 7% compared with late flowering cultivars. Similarly, regulated deficit irrigation requirements and yield were reduced by 46% and 18%, respectively, compared with full irrigation. The results confirm the promise offered by these strategies as adaptation measures for managing an olive crop under semi-arid conditions in a changing climate.  
  Address 2018-06-28  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0378-3774 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5204  
Permanent link to this record
 

 
Author Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. url  doi
openurl 
  Title Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China Type Journal Article
  Year 2015 Publication (up) Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 208 Issue Pages 12-20  
  Keywords agronomic management; climate change; food security; impact; water stress; yield potential; resource use efficiency; northeast china; climate-change; food security; environmental-quality; crop productivity; plain; agriculture; management; intensification  
  Abstract The precise spatially explicit knowledge about crop yield potentials and yield gaps is essential to guide sustainable intensification of agriculture. In this study, the maize yield potentials from 1980 to 2008 across the major maize production regions of China were firstly estimated by county using ensemble simulation of a well-validated large scale crop model, i.e., MCWLA-Maize model. Then, the temporal and spatial patterns of maize yield potentials and yield gaps during 1980-2008 were presented and analyzed. The results showed that maize yields became stagnated at 32.4% of maize-growing areas during the period. In the major maize production regions, i.e., northeastern China, the North China Plain (NCP) and southwestern China, yield gap percentages were generally less than 40% and particularly less than 20% in some areas. By contrast, in northern and southern China, where actual yields were relatively lower, yield gap percentages were generally larger than 40%. The areas with yield gap percentages less than 20% and less than 40% accounted for 8.2% and 27.6% of maize-growing areas, respectively. During the period, yield potentials decreased in the NCP and southwestern China due to increase in temperature and decrease in solar radiation; by contrast, increased in northern, northeastern and southeastern China due to increases in both temperature and solar radiation. Yield gap percentages decreased generally by 2% per year across the major maize production regions, although increased in some areas in northern and northeastern China. The shrinking of yield gap was due to increases in actual yields and decreases in yield potentials in the NCP and southwestern China; and due to larger increases in actual yields than in yield potentials in northeastern and southeastern China. The results highlight the importance of sustainable intensification of agriculture to close yield gaps, as well as breeding new cultivars to increase yield potentials, to meet the increasing food demand. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4715  
Permanent link to this record
 

 
Author Gabaldón-Leal, C.; Lorite, I.J.; Mínguez, M.I.; Lizaso, J.I.; Dosio, A.; Sanchez, E.; Ruiz-Ramos, M. url  doi
openurl 
  Title Strategies for adapting maize to climate change and extreme temperatures in Andalusia, Spain Type Journal Article
  Year 2015 Publication (up) Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 159-173  
  Keywords climate change; impact; adaptation; maize; crop model; regional climate model; extreme temperature; elevated carbon-dioxide; iberian peninsula; future climate; mediterranean environment; crop productivity; model simulations; pollen viability; european climate; bias correction; change impacts  
  Abstract Climate projections indicate that rising temperatures will affect summer crops in the southern Iberian Peninsula. The aim of this study was to obtain projections of the impacts of rising temperatures, and of higher frequency of extreme events on irrigated maize, and to evaluate some adaptation strategies. The study was conducted at several locations in Andalusia using the CERES-Maize crop model, previously calibrated/validated with local experimental datasets. The simulated climate consisted of projections from regional climate models from the ENSEMBLES project; these were corrected for daily temperature and precipitation with regard to the E-OBS observational dataset. These bias-corrected projections were used with the CERES-Maize model to generate future impacts. Crop model results showed a decrease in maize yield by the end of the 21st century from 6 to 20%, a decrease of up to 25% in irrigation water requirements, and an increase in irrigation water productivity of up to 22%, due to earlier maturity dates and stomatal closure caused by CO2 increase. When adaptation strategies combining earlier sowing dates and cultivar changes were considered, impacts were compensated, and maize yield increased up to 14%, compared with the baseline period (1981-2010), with similar reductions in crop irrigation water requirements. Effects of extreme maximum temperatures rose to 40% at the end of the 21st century, compared with the baseline. Adaptation resulted in an overall reduction in extreme T-max damages in all locations, with the exception of Granada, where losses were limited to 8%.  
  Address 2016-06-01  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4738  
Permanent link to this record
 

 
Author Persson, T.; Kværnø, S.; Höglind, M. url  doi
openurl 
  Title Impact of soil type extrapolation on timothy grass yield under baseline and future climate conditions in southeastern Norway Type Journal Article
  Year 2015 Publication (up) Climate Research Abbreviated Journal Clim. Res.  
  Volume 65 Issue Pages 71-86  
  Keywords climate change scenarios; crop modelling; forage grass; lingra; soil properties; spatial variability; phleum pretense; poaceae; simulation-model; nutritive-value; systems simulation; catimo model; crop models; growth; nitrogen; scale; productivity; regrowth  
  Abstract Interactions between soil properties and climate affect forage grass productivity. Dynamic models, simulating crop performance as a function of environmental conditions, are valid for a specific location with given soil and weather conditions. Extrapolations of local soil properties to larger regions can help assess the requirement for soil input in regional yield estimations. Using the LINGRA model, we simulated the regional yield level and variability of timothy, a forage grass, in Akershus and Ostfold counties, Norway. Soils were grouped according to physical similarities according to 4 sets of criteria. This resulted in 66, 15, 5 and 1 groups of soils. The properties of the soil with the largest area was extrapolated to the other soils within each group and input to the simulations. All analyses were conducted for 100 yr of generated weather representing the period 1961-1990, and climate projections for the period 2046-2065, the Intergovernmental Panel on Climate Change greenhouse gas emission scenario A1B, and 4 global climate models. The simulated regional seasonal timothy yields were 5-13% lower on average and had higher inter-annual variability for the least detailed soil extrapolation than for the other soil extrapolations, across climates. There were up to 20% spatial intra-regional differences in simulated yield between soil extrapolations. The results indicate that, for conditions similar to these studied here, a few representative profiles are sufficient for simulations of average regional seasonal timothy yield. More spatially detailed yield analyses would benefit from more detailed soil input.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0936-577x 1616-1572 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4674  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: