toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Shrestha, S.; Ciaian, P.; Himics, M.; van Doorslaer, B. openurl 
  Title Impacts of climate change on EU agriculture Type Journal Article
  Year 2013 Publication Review of Agricultural and Applied Economics Abbreviated Journal Review of Agricultural and Applied Economics  
  Volume 16 Issue 2 Pages 24-39  
  Keywords climate change; agricultural productivity; adaptation; Europe  
  Abstract The current paper investigates the medium term economic impact of climate changes on the EU agriculture. The yield change data under climate change scenarios are taken from the BIOMA (Biophysical Models Application) simulation environment. We employ CAPRI modelling framework to identify the EU aggregate economic effects as well as regional impacts. We take into account supply and market price adjustments of the EU agricultural sector as well as technical adaptation of crops to climate change. Overall results indicate an increase in yields and production level in the EU agricultural sector due to the climate change. In general, there are relatively small effects at the EU aggregate. For example, the value of land use and welfare change by approximately between -2% and 0.2%. However, there is a stronger impact at regional level with some stronger effects prevailing particularly in the Central and Northern EU and smaller impacts are observed in Southern Europe. Regional impacts of climate change vary by a factor higher up to 10 relative to the aggregate EU impacts. The price adjustments reduce the response of agricultural sector to climate change in particular with respect to production and income changes. The technical adaption of crops to climate change may result in a change production and land use by a factor between 1.4 and 6 relative to no-adaptation situation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4615  
Permanent link to this record
 

 
Author (up) Siczek, A.; Horn, R.; Lipiec, J.; Usowicz, B.; Łukowski, M. url  doi
openurl 
  Title Effects of soil deformation and surface mulching on soil physical properties and soybean response related to weather conditions Type Journal Article
  Year 2015 Publication Soil and Tillage Research Abbreviated Journal Soil and Tillage Research  
  Volume 153 Issue Pages 175-184  
  Keywords straw mulch; soil temperature; soil matric potential; soil penetration resistance; soybean biomass; seed and protein yield; water productivity; bulk-density; management-practices; crop production; n-2 fixation; compaction; growth; nitrogen; yield; straw; temperature  
  Abstract A field experiment was conducted on Haplic Luvisol developed from loess to assess the effects of soil deformation and straw mulch on soil water status (matric potential), temperature, penetration resistance, soybean growth, seed yield and yield components including straw, protein and oil in 2006-2008. Water use efficiencies related to the amount of rainfall during the growing seasons were calculated for seeds and total above ground biomass. The soil deformation levels (main plots) comprised the following trials: non-compacted (NC, 0 tractor pass), moderately compacted (MC, 3 passes), and strongly compacted (SC, 5 passes). A uniform seedbed in all plots was prepared by harrowing before planting. The main plots included sub-plots without and with surface wheat straw mulch (0.5 kg m(-2)) and the corresponding trials were NC + M, MC + M, SC + M. The amount and distribution of rainfall during the growing season differed among the experimental years with extended drought at bloom-full seed (R2-R6) stages in 2006, good water supply in 2007, and alternative periods with relatively high and low rainfalls in 2008. The effect of soil deformation on matric potential was influenced by weather conditions, soybean growth phase, mulching and depth. The differences were greatest in 2007 and 2008 at R7-R8 growth stages. With increasing deformation level from NC to SC matric potential for 0-15 cm depth during these stages significantly decreased from -401 to -1184 kPa in 2007 and from -1154 to -1432 kPa in 2008. On mulched soil, the corresponding ranges were from -541 to -841 klpa and from -748 to -1386 kPa, respectively. In the dry summer 2006, the differences were smaller and less consistent. Irrespective of soil deformation level, mulching reduced soil temperature in most growth phases but most pronounced initially. Most yield components increased from NC to MC during the experiments which could be attributed to enhanced root water and nutrient uptake rates and decreased from MC to SC due to high soil strength that restrained root growth down to deeper depth. The yields of seeds, straw, protein and oil as well as water productivity of soybean seed and biomass were improved by mulching in 2007-2008. This improvement was more pronounced in 2007 when the mean yield of seeds, protein and oil were significantly greater by 16, 29 and 11%, respectively and was attributed to positive alterations in soil water retention. These results indicate the possibilities of improvement in soybean performance by identifying allowable amount of traffic and mulching practices at planting depending on weather fluctuations during the growing season. Since rainfall and air temperature distribution in 2007 are close to those averaged over a long period of time, the use of straw mulch may positively affect soybean performance and yields excluding anomalously dry years. The positive effect of straw mulch can be enhanced by moderate soil deformation combined with seedbed loosening before planting to avoid constraining effect of soil structure on crop establishment. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-1987 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4732  
Permanent link to this record
 

 
Author (up) Tao, F.; Zhang, S.; Zhang, Z.; Rötter, R.P. url  doi
openurl 
  Title Temporal and spatial changes of maize yield potentials and yield gaps in the past three decades in China Type Journal Article
  Year 2015 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.  
  Volume 208 Issue Pages 12-20  
  Keywords agronomic management; climate change; food security; impact; water stress; yield potential; resource use efficiency; northeast china; climate-change; food security; environmental-quality; crop productivity; plain; agriculture; management; intensification  
  Abstract The precise spatially explicit knowledge about crop yield potentials and yield gaps is essential to guide sustainable intensification of agriculture. In this study, the maize yield potentials from 1980 to 2008 across the major maize production regions of China were firstly estimated by county using ensemble simulation of a well-validated large scale crop model, i.e., MCWLA-Maize model. Then, the temporal and spatial patterns of maize yield potentials and yield gaps during 1980-2008 were presented and analyzed. The results showed that maize yields became stagnated at 32.4% of maize-growing areas during the period. In the major maize production regions, i.e., northeastern China, the North China Plain (NCP) and southwestern China, yield gap percentages were generally less than 40% and particularly less than 20% in some areas. By contrast, in northern and southern China, where actual yields were relatively lower, yield gap percentages were generally larger than 40%. The areas with yield gap percentages less than 20% and less than 40% accounted for 8.2% and 27.6% of maize-growing areas, respectively. During the period, yield potentials decreased in the NCP and southwestern China due to increase in temperature and decrease in solar radiation; by contrast, increased in northern, northeastern and southeastern China due to increases in both temperature and solar radiation. Yield gap percentages decreased generally by 2% per year across the major maize production regions, although increased in some areas in northern and northeastern China. The shrinking of yield gap was due to increases in actual yields and decreases in yield potentials in the NCP and southwestern China; and due to larger increases in actual yields than in yield potentials in northeastern and southeastern China. The results highlight the importance of sustainable intensification of agriculture to close yield gaps, as well as breeding new cultivars to increase yield potentials, to meet the increasing food demand. (C) 2015 Elsevier B.V. All rights reserved.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8809 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4715  
Permanent link to this record
 

 
Author (up) Van Oijen, M.; Höglind, M. doi  openurl
  Title Toward a Bayesian procedure for using process-based models in plant breeding, with application to ideotype design Type Journal Article
  Year 2016 Publication Euphytica Abbreviated Journal Euphytica  
  Volume 207 Issue 3 Pages 627-643  
  Keywords BASGRA; cold tolerance; genotype-environment interaction; plant breeding; process-based modelling; yield stability; grassland productivity; timothy regrowth; climate-change; water-deficit; forest models; late blight; leaf-area; calibration; growth; tolerance  
  Abstract Process-based grassland models (PBMs) simulate growth and development of vegetation over time. The models tend to have a large number of parameters that represent properties of the plants. To simulate different cultivars of the same species, different parameter values are required. Parameter differences may be interpreted as genetic variation for plant traits. Despite this natural connection between PBMs and plant genetics, there are only few examples of successful use of PBMs in plant breeding. Here we present a new procedure by which PBMs can help design ideotypes, i.e. virtual cultivars that optimally combine properties of existing cultivars. Ideotypes constitute selection targets for breeding. The procedure consists of four steps: (1) Bayesian calibration of model parameters using data from cultivar trials, (2) Estimating genetic variation for parameters from the combination of cultivar-specific calibrated parameter distributions, (3) Identifying parameter combinations that meet breeding objectives, (4) Translating model results to practice, i.e. interpreting parameters in terms of practical selection criteria. We show an application of the procedure to timothy (Phleum pratense L.) as grown in different regions of Norway.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-2336 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4820  
Permanent link to this record
 

 
Author (up) Ventrella, D.; Giglio, L.; Charfeddine, M.; Dalla Marta, A. openurl 
  Title Consumptive use of green and blue water for winter durum wheat cultivated in Southern Italy Type Journal Article
  Year 2015 Publication Italian Journal of Agrometeorology Abbreviated Journal Italian Journal of Agrometeorology  
  Volume 20 Issue 1 Pages 33-44  
  Keywords irrigation; water productivity; model simulation; climate change; climate-change scenarios; air co2 enrichment; impact; footprint; irrigation; simulation; yield; agriculture; variability; resources  
  Abstract In this study at the regional scale, the model DSSAT CERES-Wheat was applied in order to simulate the cultivation of winter durum wheat (WW) and to estimate the green water (GW) and the blue water (BW) through a dual-step approach (with and without supplemental irrigation). The model simulation covered a period of 30 years for three scenarios including a reference period and two future scenarios based on forecasted global average temperature increase of 2 and 5 degrees C. The GW and BW contribution for evapo transpiration requirement is presented and analyzed on a distributed scale related to the Puglia region (Southern Italy) characterized by high evaporative demand of the atmosphere. The GW component was dominant compared to BW, covering almost 90% of the ETc of WW Under a Baseline scenario the weight BW was 11%, slightly increased in the future scenarios. GW appeared dependent on the spatial and temporal distribution of rainfall during the crop cycle, and to the hydraulic characteristics of soil for each calculation unit. After considering the effects of climate change on irrigation requirement of WW we carried out an example of analysis in order to verify the economic benefit of supplemental irrigation for WW cultivation. The probability that irrigation generates a negative or zero income ranged between 55 and 60% and climate change did not impact the profitability of irrigation for WW as simulated for the economic and agro-pedoclimatic conditions of Puglia region considered in this study.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4653  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: