|   | 
Details
   web
Records
Author (up) Rötter, R.P.; Höhn, J.G.; Fronzek, S.
Title Projections of climate change impacts on crop production – a global and a Nordic perspective Type Journal Article
Year 2012 Publication Acta Agriculturae Scandinavica, Section A – Animal Science Abbreviated Journal Acta Agriculturae Scandinavica, Section A – Animal Science
Volume 62 Issue Pages 166-180
Keywords climate change; impact projection; food production; uncertainty; crop simulation model; food security; integrated assessment; winter-wheat; scenarios; agriculture; adaptation; temperature; models; yield; scale
Abstract Global climate is changing and food production is very sensitive to weather and climate variations. Global assessments of climate change impacts on food production have been made since the early 1990s, initially with little attention to the uncertainties involved. Although there has been abundant analysis of uncertainties in future greenhouse gas emissions and their impacts on the climate system, uncertainties related to the way climate change projections are scaled down as appropriate for different analyses and in modelling crop responses to climate change, have been neglected. This review paper mainly addresses uncertainties in crop impact modelling and possibilities to reduce them. We specifically aim to (i) show ranges of projected climate change-induced impacts on crop yields, (ii) give recommendations on use of emission scenarios, climate models, regionalization and ensemble crop model simulations for different purposes and (iii) discuss improvements and a few known unknowns’ affecting crop impact projections.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0906-4702, 1651-1972 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4591
Permanent link to this record
 

 
Author (up) Ruete, A.; Velarde, A.; Blanco-Penedo, I.
Title Eco-DREAMS-S: modelling the impact of climate change on milk performance in organic dairy farms Type Journal Article
Year 2015 Publication Advances in Animal Biosciences Abbreviated Journal Advances in Animal Biosciences
Volume 6 Issue 01 Pages 21-23
Keywords dairy; organic; THI; heat stress; milk production
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-4700 ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4679
Permanent link to this record
 

 
Author (up) Ruiu, L.M.; Maurizi, S.; Sassu, S.; Seddaiu, G.; Zuin, O.; Blackmore, C.; Roggero, P.P.
Title Re-Staging La Rasgioni: lessons learned from transforming a traditional form of conflict resolution to engage stakeholders in agricultural water governance Type Journal Article
Year 2017 Publication Water Abbreviated Journal Water
Volume 9 Issue 4 Pages 297
Keywords co-researching; dairy farming; ecosystem perception; systemic governance; governance learning; irrigation; knowledge co-production; nitrate pollution; social learning; stakeholders; theatre
Abstract This paper presents an informal process inspired by a public practice of conflict mediation used until a few decades ago in Gallura (NE Sardinia, Italy), named La Rasgioni (The Reason). The aim is twofold: (i) to introduce an innovative method that translates the complexity of water-related conflicts into a “dialogical tool”, aimed at enhancing social learning by adopting theatrical techniques; and (ii) to report the outcomes that emerged from the application of this method in Arborea, the main dairy cattle district and the only nitrate-vulnerable zone in Sardinia, to mediate contrasting positions between local entrepreneurs and representatives of the relevant institutions. We discuss our results in the light of four pillars, adopted as research lenses in the International research Project CADWAGO (Climate Change Adaptation and Water Governance), which consider the specific “social–ecological” components of the Arborea system, climate change adaptability in water governance institutions and organizations, systemic governance (relational) practices, and governance learning. The combination of the four CADWAGO pillars and La Rasgioni created an innovative dialogical space that enabled stakeholders and researchers to collectively identify barriers and opportunities for effective governance practices. Potential wider implications and applications of La Rasgioni process are also discussed in the paper.
Address 2017-04-24
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-4441 ISBN Medium Article
Area Expedition Conference
Notes CropM, LiveM, ft_macsur Approved yes
Call Number MA @ admin @ Serial 4944
Permanent link to this record
 

 
Author (up) Sakschewski, B.; von Bloh, W.; Huber, V.; Müller, C.; Bondeau, A.
Title Feeding 10 billion people under climate change: How large is the production gap of current agricultural systems Type Journal Article
Year 2014 Publication Ecological Modelling Abbreviated Journal Ecol. Model.
Volume 288 Issue Pages 103-111
Keywords Population growth; Food production; Dynamic global vegetation model; Climate change; LPJmL; stomatal conductance; population-growth; food-production; co2; enrichment; model; photosynthesis; scenarios; leaves; plants; yield
Abstract The human population is projected to reach more than 10 billion in the year 2100. Together with changing consumption pattern, population growth will lead to increasing food demand. The question arises whether or not the Earth is capable of fulfilling this demand. In this study, we approach this question by estimating the carrying capacity of current agricultural systems (K-C), which does not measure the maximum number of people the Earth is likely to feed in the future, but rather allows for an indirect assessment of the increases in agricultural productivity required to meet demands. We project agricultural food production under progressing climate change using the state-of-the-art dynamic global vegetation model LPJmL, and input data of 3 climate models. For 1990 to 2100 the worldwide annual caloric yield of the most important 11 crop types is simulated. Model runs with and without elevated atmospheric CO2 concentrations are performed in order to investigate CO2 fertilization effects. Country-specific per-capita caloric demands fixed at current levels and changing demands based on future GDP projections are considered to assess the role of future dietary shifts. Our results indicate that current population projections may considerably exceed the maximum number of people that can be fed globally if climate change is not accompanied by significant changes in land use, agricultural efficiencies and/or consumption pathways. We estimate the gap between projected population size and K-C to reach 2 to 6.8 billion people by 2100. We also present possible caloric self-supply changes between 2000 and 2100 for all countries included in this study. The results show that predominantly developing countries in tropical and subtropical regions will experience vast decreases of self-supply. Therefore, this study is important for planning future large-scale agricultural management, as well as the critical assessment of population projections, which should take food-mediated climate change feedbacks into account
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0304-3800 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4806
Permanent link to this record
 

 
Author (up) Schaap, B.F.; Reidsma, P.; Verhagen, J.; Wolf, J.; van Ittersum, M.K.
Title Participatory design of farm level adaptation to climate risks in an arable region in The Netherlands Type Journal Article
Year 2013 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 48 Issue Pages 30-42
Keywords adaptation; climate change; impact; crop production; wheat; onion; potato; sugar beet; crop production; change impacts; agriculture; variability; events; europe; model
Abstract In the arable farming region Flevoland in The Netherlands climate change, including extreme events and pests and diseases, will likely pose risks to a variety of crops including high value crops such as seed potato, ware potato and seed onion. A well designed adaptation strategy at the farm level can reduce risks for farmers in Flevoland. Currently, most of the impact assessments rely heavily on (modelling) techniques that cannot take into account extreme events and pests and diseases and cannot address all crops, and are thus not suited as input for a comprehensive adaptation strategy at the farm level. To identify major climate risks and impacts and develop an adaptation measure portfolio for the most relevant risks we complemented crop growth modelling with a semi-quantitative and participatory approach, the Agro Climatic Calendar (ACC), A cost-benefit analysis and stakeholder workshops were used to identify robust adaptation measures and design an adaptation strategy for contrasting scenarios in 2050. For Flevoland, potential yields of main crops were projected to increase, but five main climate risks were identified, and these are likely to offset the positive impacts. Optimized adaptation strategies differ per scenario (frequency of occurrence of climate risks) and per farm (difference in economic loss). When impacts are high (in the +2 degrees C and A1 SRES scenario) drip irrigation was identified as the best adaptation measure against the main climate risk heat wave that causes second-growth in seed and ware potato. When impacts are smaller (the +1 degrees C and B2 SRES scenario), other options including no adaptation are more cost-effective. Our study shows that with relatively simple techniques such as the ACC combined with a stakeholder process, adaptation strategies can be designed for whole farming systems. Important benefits of this approach compared to modelling techniques are that all crops can be included, all climate factors can be addressed, and a large range of adaptation measures can be explored. This enhances that the identified adaptation strategies are recognizable and relevant for stakeholders. (C) 2013 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4809
Permanent link to this record