toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Humpenöder, F.; Popp, A.; Dietrich, J.P.; Klein, D.; Lotze-Campen, H.; Bonsch, M.; Bodirsky, B.L.; Weindl, I.; Stevanovic, M.; Müller, C. url  doi
openurl 
  Title Investigating afforestation and bioenergy CCS as climate change mitigation strategies Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 6 Pages 064029  
  Keywords climate change mitigation; afforestation; bioenergy; carbon capture and storage; land-use modeling; land-based mitigation; carbon sequestration; land-use change; crop productivity; carbon capture; energy; storage; model; food; conservation; agriculture; scenarios  
  Abstract The land-use sector can contribute to climate change mitigation not only by reducing greenhouse gas (GHG) emissions, but also by increasing carbon uptake from the atmosphere and thereby creating negative CO2 emissions. In this paper, we investigate two land-based climate change mitigation strategies for carbon removal: (1) afforestation and (2) bioenergy in combination with carbon capture and storage technology (bioenergy CCS). In our approach, a global tax on GHG emissions aimed at ambitious climate change mitigation incentivizes land-based mitigation by penalizing positive and rewarding negative CO2 emissions from the land-use system. We analyze afforestation and bioenergy CCS as standalone and combined mitigation strategies. We find that afforestation is a cost-efficient strategy for carbon removal at relatively low carbon prices, while bioenergy CCS becomes competitive only at higher prices. According to our results, cumulative carbon removal due to afforestation and bioenergy CCS is similar at the end of 21st century (600-700 GtCO(2)), while land-demand for afforestation is much higher compared to bioenergy CCS. In the combined setting, we identify competition for land, but the impact on the mitigation potential (1000 GtCO(2)) is partially alleviated by productivity increases in the agricultural sector. Moreover, our results indicate that early-century afforestation presumably will not negatively impact carbon removal due to bioenergy CCS in the second half of the 21st century. A sensitivity analysis shows that land-based mitigation is very sensitive to different levels of GHG taxes. Besides that, the mitigation potential of bioenergy CCS highly depends on the development of future bioenergy yields and the availability of geological carbon storage, while for afforestation projects the length of the crediting period is crucial.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM Approved no  
  Call Number MA @ admin @ Serial 4627  
Permanent link to this record
 

 
Author Lehtonen, H.S.; Irz, X. url  openurl
  Title Impacts of reducing red meat consumption on agricultural production in Finland Type Journal Article
  Year 2013 Publication Agriculture and Food Science Abbreviated Journal Agriculture and Food Science  
  Volume 22 Issue 3 Pages 356-370  
  Keywords agricultural sector modelling; food demand; greenhouse gas mitigation; agricultural policy; agricultural economics  
  Abstract This paper summarises the simulated effects on Finnish agrcultural production and trade of a 20% decrease in Finnish demand for red meat (beef, pork, lamb). According to our results, reduced red meat consumption would be offset by increased consumption of poultry meat, eggs, dairy products and fish, as well as small increases in consumption of fruits and vegetables, peas, nuts, cereal products and sweets. By including the derived demand changes in an agricultural sector model, we show that livestock production in Finland, incentivised by national production-linked payments for milk and bovine animals, would decrease by much less than 20% due to the complex nature of agricultural production and trade. Overall, assuming unchanged consumer preferences and agricultural policy, a 20% reduction in red meat consumption is not likely to lead to a substantial decrease in livestock production or changed land use, or greenhouse gas emissions, from Finnish agriculture.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1795-1895 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4607  
Permanent link to this record
 

 
Author Özkan, Ş.; Farquharson, R.J.; Hill, J.; Malcolm, B. url  doi
openurl 
  Title A stochastic analysis of the impact of input parameters on profit of Australian pasture-based dairy farms under variable carbon price scenarios Type Journal Article
  Year 2015 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy  
  Volume 48 Issue Pages 163-171  
  Keywords carbon tax; operating profit; stochastic dominance; dairy; feeding system; mitigation; cows; systems; efficiency; risk  
  Abstract The imposition of a carbon tax in the economy will have indirect impacts on dairy farmers in Australia. Although there is a great deal of information available regarding mitigation strategies both in Australia and internationally, there seems to be a lack of research investigating the variable prices of carbon-based emissions on dairy farm operating profits in Australia. In this study, a stochastic analysis comparing the uncertainty in income in response to different prices on carbon-based emissions was conducted. The impact of variability in pasture consumption and variable prices of concentrates and hay on farm profitability was also investigated. The two different feeding systems examined were a ryegrass pasture-based system (RM) and a complementary forage-based system (CF). Imposing a carbon price ($20-$60) and not changing the systems reduced the farm operating profits by 28.4% and 25.6% in the RM and CF systems, respectively compared to a scenario where no carbon price was imposed. Different farming businesses will respond to variability in the rapidly changing operating environment such as fluctuations in pasture availability, price of purchased feeds and price of milk or carbon emissions differently. Further, in case there is a carbon price imposed for GHG emissions emanated from dairy farming systems, changing from pasture-based to more complex feeding systems incorporating home-grown double crops may reduce the reductions in farm operating profits. There is opportunity for future studies to focus on the impacts of different mitigation strategies and policy applications on farm operating profits. (C) 2015 Elsevier Ltd. All rights reserved.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes LiveM Approved no  
  Call Number MA @ admin @ Serial 4574  
Permanent link to this record
 

 
Author Kyle, P.; Müller, C.; Calvin, K.; Thomson, A. url  doi
openurl 
  Title Meeting the radiative forcing targets of the representative concentration pathways in a world with agricultural climate impacts Type Journal Article
  Year 2014 Publication Earth’s Future Abbreviated Journal Earth’s Future  
  Volume 2 Issue Pages 83-98  
  Keywords integrated assessment; climate impacts; emissions mitigation; representative concentration pathway; land-use; carbon; stabilization; cmip5  
  Abstract This study assesses how climate impacts on agriculture may change the evolution of the agricultural and energy systems in meeting the end-of-century radiative forcing targets of the representative concentration pathways (RCPs). We build on the recently completed Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) exercise that has produced global gridded estimates of future crop yields for major agricultural crops using climate model projections of the RCPs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). For this study we use the bias-corrected outputs of the HadGEM2-ES climate model as inputs to the LPJmL crop growth model, and the outputs of LPJmL to modify inputs to the GCAM integrated assessment model. Our results indicate that agricultural climate impacts generally lead to an increase in global cropland, as compared with corresponding emissions scenarios that do not consider climate impacts on agricultural productivity. This is driven mostly by negative impacts on wheat, rice, other grains, and oil crops. Still, including agricultural climate impacts does not significantly increase the costs or change the technological strategies of global, whole-system emissions mitigation. In fact, to meet the most aggressive climate change mitigation target (2.6W/m(2) in 2100), the net mitigation costs are slightly lower when agricultural climate impacts are considered. Key contributing factors to these results are (a) low levels of climate change in the low-forcing scenarios, (b) adaptation to climate impacts simulated in GCAM through inter-regional shifting in the production of agricultural goods, and (c) positive average climate impacts on bioenergy crop yields.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2328-4277 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4531  
Permanent link to this record
 

 
Author Bodirsky, B.L.; Müller, C. url  doi
openurl 
  Title Robust relationship between yields and nitrogen inputs indicates three ways to reduce nitrogen pollution Type Journal Article
  Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.  
  Volume 9 Issue 11 Pages 111005  
  Keywords nitrogen use efficiency; nitrogen; fertilizer; nitrogen pollution; agriculture; yields; mitigation; framework  
  Abstract Historic increases in agricultural production came at the expense of substantial environmental burden through nitrogen pollution. Lassaletta et al (2014 Environ. Res. Lett. 9 105011) examine the historic relationship of crop yields and nitrogen fertilizer inputs globally and find a simple and robust relationship of declining nitrogen use efficiency with increasing nitrogen inputs. This general relationship helps to understand the dilemma between increased agricultural production and nitrogen pollution and allows identifying pathways towards more sustainable agricultural production and necessary associated policies.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-9326 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4514  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: