toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Cortignani, R.; Dono, G. doi  openurl
  Title Agricultural policy and climate change: An integrated assessment of the impacts on an agricultural area of Southern Italy Type Journal Article
  Year 2018 Publication Environmental Science and Policy Abbreviated Journal Environ. Sci. Pol.  
  Volume 81 Issue Pages 26-35  
  Keywords Agricultural policy; Climate change; Bio-economic model; Integrated Assessment; Temperature-Humidity Index; Adaptation Pathways; Maximum-Entropy; Model; Cap; Uncertainty; Irrigation; Management; Scenarios; Systems  
  Abstract The European Union (EU) has recently reformed its Common Agricultural Policy (CAP) and, in parallel, has completely abolished the production quotas for milk. These changes will have important consequences for the use of land, of inputs (i.e., water and chemicals) and on the economic performance of rural areas. It is of interest to evaluate the integrated impact of these modifications and of climate change (CC), since the latter could neutralize or reverse some desired effects of the former. For this purpose, this paper evaluates the potential impact of the abolition of milk quotas, as well as of the reform of the first pillar of CAP in two different climate scenarios (present and near future). A bio-economic model simulates the possible adaptation of various farm types in an agricultural area of Southern Italy to these changes, given the available technological options and current market conditions. The main results show that the considered policy changes have small positive impacts on economic and environmental factors of the study area. However, some farm types are more affected. CC can effectively attenuate or reverse several of those effects, especially in some farm types. These results can inform the planning of future changes to the CAP, which will have to act in the context of deeper climate alteration.  
  Address 2018-03-02  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1462-9011 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5193  
Permanent link to this record
 

 
Author Sanz-Cobena, A.; Misselbrook, T.H.; Hernaiz, P.; Vallejo, A. doi  openurl
  Title Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil Type Journal Article
  Year 2019 Publication Atmospheric Environment Abbreviated Journal Atm. Environ.  
  Volume 216 Issue Pages 116913  
  Keywords ammonia; micrometeorological method; slurry incorporation; trade-offs; nitrous oxide; mediterranean agroecosystems; nitrous-oxide emissions; field-applied manure; organic fertilizers; ammonia emissions; methane emissions; N2O emissions; animal manures; management; losses; grassland  
  Abstract Ammonia emission from fertilized cropping systems is an important concern for stakeholders, particularly in regions with high livestock densities producing large amounts of manure. Application of pig slurries can result in very large losses of N through NH3 volatilization, thus decreasing the N use efficiency (NUE) of the applied manure. Shallow incorporation has been shown to significantly abate these losses. In this field study, we assessed the impact of contrasting weather conditions on the effectiveness of shallow injection to abate NH3 emissions from pig slurry application to a Mediterranean soil. As potential trade-offs of NH3 abatement, greenhouse gas emissions were also measured under conditions of high soil moisture. Compared with surface application of slurry, shallow injection effectively and significantly decreased NH3 losses independently of weather conditions, but reductions of NH3 emission were greater after heavy rainfall. In contrast, under these conditions, shallow injection triggered higher emissions of N2O and CH4. Our findings reinforce the idea that any single-pollutant abatement strategy needs to be designed and assessed in a regional context and considering potential trade-offs in the form of other pollutants.  
  Address 2020-06-08  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium article  
  Area Expedition Conference  
  Notes LiveM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5234  
Permanent link to this record
 

 
Author García-López, J.; Lorite, I.J.; García-Ruiz, R.; Domínguez, J. doi  openurl
  Title Evaluation of three simulation approaches for assessing yield of rainfed sunflower in a Mediterranean environment for climate change impact modelling Type Journal Article
  Year 2014 Publication Climatic Change Abbreviated Journal Clim. Change  
  Volume 124 Issue 1-2 Pages 147-162  
  Keywords winter-wheat; water-stress; irrigation management; high-temperature; oil quality; oilcrop-sun; crop model; responses; variability; growth  
  Abstract The determination of the impact of climate change on crop yield at a regional scale requires the development of new modelling methodologies able to generate accurate yield estimates with reduced available data. In this study, different simulation approaches for assessing yield have been evaluated. In addition to two well-known models (AquaCrop and Stewart function), a methodological proposal considering a simplified approach using an empirical model (SOM) has been included in the analysis. This empirical model was calibrated using rainfed sunflower experimental field data from three sites located in Andalusia, southern Spain, and validated using two additional locations, providing very satisfactory results compared with the other models with higher data requirements. Thus, only requiring weather data (accumulated rainfall from the beginning of the season fixed on September 1st, and maximum temperature during flowering) the approach accurately described the temporal and spatial yield variability observed (RMSE = 391 kg ha(-1)). The satisfactory results for assessing yield of sunflower under semi-arid conditions obtained in this study demonstrate the utility of empirical approaches with few data requirements, providing an excellent decision tool for climate change impact analyses at a regional scale, where available data is very limited.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0165-0009 1573-1480 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4622  
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Carter, T.R.; Harrison, P.A.; Rounsevell, M. doi  openurl
  Title Improving the representation of adaptation in climate change impact models Type Journal Article
  Year 2019 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change  
  Volume 19 Issue 3 Pages 711-721  
  Keywords Adaptive capacity; Limits; Water; Land; Decision making; Integrated assessment; Land-Cover Change; Global Change; River-Basin; Integrated Assessment; Adaptive Capacity; Vulnerability; Variability; Precautionary; Agriculture; Management  
  Abstract Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.  
  Address 2019-04-27  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1436-3798 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5220  
Permanent link to this record
 

 
Author Dono, G.; Raffaele, C.; Luca, G.; Roggero, P.P. openurl 
  Title Income Impacts of Climate Change: Irrigated Farming in the Mediterranean and Expected Changes in Probability of Favorable and Adverse Weather Conditions Type Journal Article
  Year 2014 Publication German Journal of Agricultural Economics Abbreviated Journal German Journal of Agricultural Economics  
  Volume 63 Issue 3 Pages 177-186  
  Keywords discrete stochastic programming; rdp measures to adapt to climate change; economic impact of climate change; irrigated agriculture and climate change; insurance tools for adaptation to climate change; water markets; risk; variability; management; systems  
  Abstract EU rural development policy (RDP) regulation 1305/2013 aims to protect farmers’ incomes from ongoing change of climate variability (CCV), and the increase in frequency of adverse climatic events. An income stabilization tool (IST) is provided to compensate drastic drops in income, including those caused by climatic events. The present study examines some aspect of its application focussing on Mediterranean irrigation area where frequent water shortages may generate significant income reductions in the current climate conditions, and may be further exacerbated by climate change. This enhanced loss of income in the future would occur due to a change in climate variability. This change would appreciably reduce the probability of weather conditions that are favourable for irrigation, but would not significantly increase either the probability of unfavourable weather conditions or the magnitude of their impact. As the IST and other insurance tools that protect against adversity and catastrophic events are only activated under extreme conditions, farmers may not consider them to be suitable in dealing with the new climate regime. This would leave a portion of the financial resources allocated by the RDP unused, resulting in less support for climate change adaptation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-1121 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4669  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: