|   | 
Details
   web
Records
Author Sanz-Cobena, A.; Misselbrook, T.H.; Hernaiz, P.; Vallejo, A.
Title Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil Type Journal Article
Year 2019 Publication Atmospheric Environment Abbreviated Journal Atm. Environ.
Volume 216 Issue Pages 116913
Keywords ammonia; micrometeorological method; slurry incorporation; trade-offs; nitrous oxide; mediterranean agroecosystems; nitrous-oxide emissions; field-applied manure; organic fertilizers; ammonia emissions; methane emissions; N2O emissions; animal manures; management; losses; grassland
Abstract Ammonia emission from fertilized cropping systems is an important concern for stakeholders, particularly in regions with high livestock densities producing large amounts of manure. Application of pig slurries can result in very large losses of N through NH3 volatilization, thus decreasing the N use efficiency (NUE) of the applied manure. Shallow incorporation has been shown to significantly abate these losses. In this field study, we assessed the impact of contrasting weather conditions on the effectiveness of shallow injection to abate NH3 emissions from pig slurry application to a Mediterranean soil. As potential trade-offs of NH3 abatement, greenhouse gas emissions were also measured under conditions of high soil moisture. Compared with surface application of slurry, shallow injection effectively and significantly decreased NH3 losses independently of weather conditions, but reductions of NH3 emission were greater after heavy rainfall. In contrast, under these conditions, shallow injection triggered higher emissions of N2O and CH4. Our findings reinforce the idea that any single-pollutant abatement strategy needs to be designed and assessed in a regional context and considering potential trade-offs in the form of other pollutants.
Address 2020-06-08
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5234
Permanent link to this record
 

 
Author Holman, I.P.; Brown, C.; Carter, T.R.; Harrison, P.A.; Rounsevell, M.
Title Improving the representation of adaptation in climate change impact models Type Journal Article
Year 2019 Publication Regional Environmental Change Abbreviated Journal Reg. Environ. Change
Volume 19 Issue 3 Pages 711-721
Keywords Adaptive capacity; Limits; Water; Land; Decision making; Integrated assessment; Land-Cover Change; Global Change; River-Basin; Integrated Assessment; Adaptive Capacity; Vulnerability; Variability; Precautionary; Agriculture; Management
Abstract Climate change adaptation is a complex human process, framed by uncertainties and constraints, which is difficult to capture in existing assessment models. Attempts to improve model representations are hampered by a shortage of systematic descriptions of adaptation processes and their relevance to models. This paper reviews the scientific literature to investigate conceptualisations and models of climate change adaptation, and the ways in which representation of adaptation in models can be improved. The review shows that real-world adaptive responses can be differentiated along a number of dimensions including intent or purpose, timescale, spatial scale, beneficiaries and providers, type of action, and sector. However, models of climate change consequences for land use and water management currently provide poor coverage of these dimensions, instead modelling adaptation in an artificial and subjective manner. While different modelling approaches do capture distinct aspects of the adaptive process, they have done so in relative isolation, without producing improved unified representations. Furthermore, adaptation is often assumed to be objective, effective and consistent through time, with only a minority of models taking account of the human decisions underpinning the choice of adaptation measures (14%), the triggers that motivate actions (38%) or the time-lags and constraints that may limit their uptake and effectiveness (14%). No models included adaptation to take advantage of beneficial opportunities of climate change. Based on these insights, transferable recommendations are made on directions for future model development that may enhance realism within models, while also advancing our understanding of the processes and effectiveness of adaptation to a changing climate.
Address 2019-04-27
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1436-3798 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5220
Permanent link to this record
 

 
Author Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; Kværnø, S.H.; Lehtonen, H.; Niedrist, G.; Øygarden, L.; Reidsma, P.; Roggero, P.P.; Rusu, T.; Santos, C.; Seddaiu, G.; Skarbøvik, E.; Ventrella, D.; Żarski, J.; Schönhart, M.
Title Impacts of climate change adaptation options on soil functions: A review of European case-studies Type Journal Article
Year 2018 Publication Land Degradation & Development Abbreviated Journal Land Degradation & Development
Volume 29 Issue 8 Pages 2378-2389
Keywords agricultural adaptation; DPSIR; regional case-studies; soil degradation; Sustainable Development Goals; Agricultural Practices; Ecosystem Services; Land Management; Netherlands; Farm; Environment; Challenges; Catchments; Framework; Nitrogen
Abstract Soils are vital for supporting food security and other ecosystem services. Climate change can affect soil functions both directly and indirectly. Direct effects include temperature, precipitation, and moisture regime changes. Indirect effects include those that are induced by adaptations such as irrigation, crop rotation changes, and tillage practices. Although extensive knowledge is available on the direct effects, an understanding of the indirect effects of agricultural adaptation options is less complete. A review of 20 agricultural adaptation case-studies across Europe was conducted to assess implications to soil threats and soil functions and the link to the Sustainable Development Goals (SDGs). The major findings are as follows: (a) adaptation options reflect local conditions; (b) reduced soil erosion threats and increased soil organic carbon are expected, although compaction may increase in some areas; (c) most adaptation options are anticipated to improve the soil functions of food and biomass production, soil organic carbon storage, and storing, filtering, transforming, and recycling capacities, whereas possible implications for soil biodiversity are largely unknown; and (d) the linkage between soil functions and the SDGs implies improvements to SDG 2 (achieving food security and promoting sustainable agriculture) and SDG 13 (taking action on climate change), whereas the relationship to SDG 15 (using terrestrial ecosystems sustainably) is largely unknown. The conclusion is drawn that agricultural adaptation options, even when focused on increasing yields, have the potential to outweigh the negative direct effects of climate change on soil degradation in many European regions.
Address 2018-10-16
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1085-3278 ISBN Medium
Area Expedition Conference
Notes XC, TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5210
Permanent link to this record
 

 
Author Cirillo, V.; Masin, R.; Maggio, A.; Zanin, G.
Title Crop-weed interactions in saline environments Type Journal Article
Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 99 Issue Pages 51-61
Keywords Salinity; Weeds; Abiotic stress; Crop management; Salt stress; Echinochloa-Crus-Galli; Portulaca Oleracea L.; Seed-Germination; Soil-Salinity; Salt Tolerance; Stress Tolerance; Chenopodium-Album; Chemical-Composition; Southern Australia; Microbial Biomass
Abstract Soil salinization is one of the most critical environmental factors affecting crop yield. It is estimated that 20% of cultivated land and 33% of irrigated agricultural land are affected by salinity. In the last decades, considerable effort to manage saline agro-ecosystems has focused on 1) controlling soil salinity to minimize/reduce the accumulation of salts in the root zone and 2) improving plants ability to cope with osmotic and ionic stress. Less attention has been given to other components of the agro-ecosystem including weed populations, which also react and adapt to soil salinization and indirectly affect plant growth and yield. Weeds represent an increasing challenge for crop systems since they have high genetic resilience and adaptation ability to adverse environmental conditions such as soil salinization. In this review, we assess current knowledge on salinity tolerance of weeds in agricultural contexts and discuss critical components of crop-weed interactions that may increase weeds competitiveness under salinity. Compared to crop species, weeds generally exhibit greater salt tolerance due to high intraspecific variability, associated with diverse physiological adaptation mechanisms (e.g. phenotipic plasticity, seed heteromorphism, allelopathy). Weed competitiveness in saline soils may be enhanced by their earlier emergence, faster growth rates and synergies occurring between soil salts and allelochemicals released by weeds. In the future, a better understanding of crop-weed relationships and molecular, physiological and agronomic stress responses under salinity is essential to design efficient strategies to achieve weed control under altered climatic and environmental conditions.
Address 2018-09-20
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5209
Permanent link to this record
 

 
Author Graversgaard, M.; Hedelin, B.; Smith, L.; Gertz, F.; Höjberg, A.L.; Langford, J.; Martinez, G.; Mostert, E.
Title Opportunities and Barriers for Water Co-Governance – A Critical Analysis of Seven Cases of Diffuse Water Pollution from Agriculture in Europe, Australia and North America Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal Sustainability
Volume 10 Issue 5 Pages 1634
Keywords collaborative governance; decentralized decision-making; non-point source pollution; nutrient management; water governance; management; policy; river; eutrophication; phosphorus; resources; nitrogen; hypoxia; quality; options
Abstract Diffuse Water Pollution from Agriculture (DWPA) and its governance has received increased attention as a policy concern across the globe. Mitigation of DWPA is a complex problem that requires a mix of policy instruments and a multi-agency, broad societal response. In this paper, opportunities and barriers for developing co-governance, defined as collaborative societal involvement in the functions of government, and its suitability for mitigation of DWPA are reviewed using seven case studies in Europe (Poland, Denmark, Sweden, The Netherlands and UK), Australia (Murray-Darling Basin) and North America (State of Minnesota). An analytical framework for assessing opportunities and barriers of co-governance was developed and applied in this review. Results indicated that five key issues constitute both opportunities and barriers, and include: (i) pressure for change; (ii) connected governance structures and allocation of resources and funding; (iii) leadership and establishment of partnerships through capacity building; (iv) use and co-production of knowledge; and (v) time commitment to develop water co-governance.
Address 2018-07-12
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial (down) 5205
Permanent link to this record