|   | 
Details
   web
Records
Author Liu, X.; Lehtonen, H.; Purola, T.; Pavlova, Y.; Rötter, R.; Palosuo, T.
Title Dynamic economic modelling of crop rotations with farm management practices under future pest pressure Type Journal Article
Year 2016 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 144 Issue Pages (down) 65-76
Keywords Farm management; Dynamic optimization; Crop rotation; Risk aversion; Climate change; Prices; climate-change; sequester carbon; changing climate; food security; challenge; Finland; ensembles; systems; europe; tool
Abstract Agricultural practice is facing multiple challenges under volatile commodity markets, inevitable climate change, mounting pest pressure and various other environment-related constraints. The objective of this research is to present a dynamic optimization model of crop rotations and farm management and show its suitability for economic analysis over a 30 year time period. In this model, we include management practices such as fertilization, fungicide treatment and liming, and apply it in a region in Southwestern Finland. Results show that (i) growing pest pressure favours the cultivation of wheat-oats and wheat-oilseeds combinations, while (ii) market prices largely determine the crops in the rotation plan and the specific management practices adopted. The flexibility of our model can also be utilized in evaluating the value of other management options such as new cultivars under different projections of future climate and market conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4719
Permanent link to this record
 

 
Author Yin, X.; Olesen, J.E.; Wang, M.; Öztürk, I.; Zhang, H.; Chen, F.
Title Impacts and adaptation of the cropping systems to climate change in the Northeast Farming Region of China Type Journal Article
Year 2016 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 78 Issue Pages (down) 60-72
Keywords Climate change; Vulnerability; Impact; Adaptation; Cropping systems; The Northeast Farming Region of China; maize production; high-temperature; growth period; yield; rice; drought; management; nitrogen; crops; pests
Abstract The Northeast Farming Region of China (NFR) is a very important crop growing area, comprising seven sub-regions: Xing’anling (XA), Sanjiang (SJ), Northwest Songliao (NSL), Central Songliao (CSL), Southwest Songliao (SSL), Changbaishan (CB) and Liaodong (LD), which has been severely affected by extreme climate events and climatic change. Therefore, a set of expert survey has been done to identify current and project future climate limitations to crop production and explore appropriate adaptation measures in NFR. Droughts have been the largest limitation for maize (Zea mays L.) in NSL and SSL, and for soybean (Glycine max L Merr.) in SSL. Chilling damage has been the largest limitation for rice (Oryza sativa L) production in XA, SJ and CB. Projected climate change is expected to be beneficial for expanding the crop growing season, and to provide more suitable conditions for sowing and harvest. Autumn frost will occur later in most parts of NFR, and chilling damage will also decrease, particularly for rice production in XA and SJ. Drought and heat stress are expected to become more severe for maize and soybean production in most parts of NFR. Also, plant diseases, pests and weeds are considered to become more severe for crop production under climate change. Adaptation measures that have already been implemented in recent decades to cope with current climatic limitations include changes in timing of cultivation, variety choice, soil tillage practices, crop protection, irrigation and use of plastic film for soil cover. With the projected climate change and increasing risk of climatic extremes, additional adaptation measures will become relevant for sustaining and improving productivity of crops in NFR to ensure food security in China. (C) 2016 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4772
Permanent link to this record
 

 
Author Sieber, S.; Amjath-Babu, T.S.; McIntosh, B.S.; Tscherning, K.; Müller, K.; Helming, K.; Pohle, D.; Fricke, K.; Verweij, P.; Pacini, C.; Jansson, T.; Gomez y Paloma, S.
Title Evaluating the characteristics of a non-standardised Model Requirements Analysis (MRA) for the development of policy impact assessment tools Type Journal Article
Year 2013 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.
Volume 49 Issue Pages (down) 53-63
Keywords impact assessment tools; iat; siat; sustainability; model requirements analysis; user requirement analysis; support; systems; design; methodology; management; decision; science
Abstract The aim of this paper is to provide a critical analysis of the strengths and weaknesses of a non-standardised Model Requirements Analysis (MRA) used for the purpose of developing the Sustainability Impact Assessment Tool (SIAT). By ‘non-standardised’ we mean not strictly following a published MRA method. The underlying question we are interested in addressing is how non-standardised methods, often employed in research driven projects, compare to defined methods with more standardised structure, with regards their ability to capture model requirements effectively, and with regards their overall usability. Through describing and critically assessing the specific features of the non-standardised MRA employed, the ambition of this paper is to provide insights useful for impact assessment tool (IAT) development. Specifically, the paper will (i) characterise kinds of user requirements relevant to the functionality and design of IATs; (ii) highlight the strengths and weaknesses of non-standardised MRA for user requirements capture, analysis and reflection in the context of IAT; (iii) critically reflect on the process and outcomes of having used a non-standardised MRA in comparison with other more standardised approaches. To accomplish these aims, we first review methods available for IAT development before describing the SIAT development process, including the MRA employed. Major strengths and weaknesses of the MRA method are then discussed in terms of user identification and characterisation, organisational characterisation and embedding, and ability to capture design options for ensuring usability and usefulness. A detailed assessment on the structural differences of MRA with two advanced approaches (Integrated DSS design and goal directed design) and their role in performance of the MRA tool is used to critique the approach employed. The results show that MRA is able to bring thematic integration, establish system performance and technical thresholds as well as detailing quality and transparency guidelines. Nevertheless the discussion points out to a number of deficiencies in application – (i) a need to more effectively characterise potential users, and; (ii) a need to better foster communication among the distinguished roles in the development process. If addressed these deficiencies, SIAT non-standardised MRA could have brought out better outcomes in terms of tool usability and usefulness, and improved embedding of the tool into conditions of targeted end-users. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-8152 ISBN Medium Article
Area Expedition Conference
Notes TradeM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4506
Permanent link to this record
 

 
Author Cirillo, V.; Masin, R.; Maggio, A.; Zanin, G.
Title Crop-weed interactions in saline environments Type Journal Article
Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.
Volume 99 Issue Pages (down) 51-61
Keywords Salinity; Weeds; Abiotic stress; Crop management; Salt stress; Echinochloa-Crus-Galli; Portulaca Oleracea L.; Seed-Germination; Soil-Salinity; Salt Tolerance; Stress Tolerance; Chenopodium-Album; Chemical-Composition; Southern Australia; Microbial Biomass
Abstract Soil salinization is one of the most critical environmental factors affecting crop yield. It is estimated that 20% of cultivated land and 33% of irrigated agricultural land are affected by salinity. In the last decades, considerable effort to manage saline agro-ecosystems has focused on 1) controlling soil salinity to minimize/reduce the accumulation of salts in the root zone and 2) improving plants ability to cope with osmotic and ionic stress. Less attention has been given to other components of the agro-ecosystem including weed populations, which also react and adapt to soil salinization and indirectly affect plant growth and yield. Weeds represent an increasing challenge for crop systems since they have high genetic resilience and adaptation ability to adverse environmental conditions such as soil salinization. In this review, we assess current knowledge on salinity tolerance of weeds in agricultural contexts and discuss critical components of crop-weed interactions that may increase weeds competitiveness under salinity. Compared to crop species, weeds generally exhibit greater salt tolerance due to high intraspecific variability, associated with diverse physiological adaptation mechanisms (e.g. phenotipic plasticity, seed heteromorphism, allelopathy). Weed competitiveness in saline soils may be enhanced by their earlier emergence, faster growth rates and synergies occurring between soil salts and allelochemicals released by weeds. In the future, a better understanding of crop-weed relationships and molecular, physiological and agronomic stress responses under salinity is essential to design efficient strategies to achieve weed control under altered climatic and environmental conditions.
Address 2018-09-20
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5209
Permanent link to this record
 

 
Author Nendel, C.; Kersebaum, K.C.; Mirschel, W.; Wenkel, K.O.
Title Testing farm management options as climate change adaptation strategies using the MONICA model Type Journal Article
Year 2014 Publication European Journal of Agronomy Abbreviated Journal European Journal of Agronomy
Volume 52 Issue Pages (down) 47-56
Keywords simulation model; climate change; crop management; adaptation strategies; nitrogen dynamics; carbon sequestration; crop productivity; simulation-model; change impacts; land-use; agriculture; scenarios; growth; yield
Abstract Adaptation of agriculture to climate change will be driven at the farm level in first place. The MONICA model was employed in four different modelling exercises for demonstration and testing different management options for farmers in Germany to adjust their production system. 30-Year simulations were run for the periods 1996-2025 and 2056-2085 using future climate data generated by a statistical method on the basis of measured data from 1961 to 2000 and the A1B scenario of the IPCC (2007a). Crop rotation designs that are expected to become possible in the future due to a prolonged vegetation period and at the same time shortened cereal growth period were tested for their likely success. The model suggested that a spring barley succeeding a winter barley may be successfully grown in the second half of the century, allowing for a larger yields by intensification of the cropping cycle. Growing a winter wheat after a sugar beet may lead to future problems as late sowing makes the winter wheat grow into periods prone to drought. Irrigation is projected to considerably improve and stabilise the yields of late cereals and of shallow rooting crops (maize and pea) on sandy soils in the continental climate part of Germany, but not in the humid West. Nitrogen fertiliser management needs to be adjusted to increasing or decreasing yield expectations and for decreasing soil moisture. On soils containing sufficient amounts of Moisture and soil organic matter, enhanced mineralisation is expected to compensate for a greater N demand. (C) 2012 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1161-0301 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4631
Permanent link to this record