toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Montesino-San Martín, M.; Olesen, J.E.; Porter, J.R. doi  openurl
  Title A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark Type Journal Article
  Year 2014 Publication Agricultural and Forest Meteorology Abbreviated Journal Agricultural and Forest Meteorology  
  Volume 187 Issue Pages 1-13  
  Keywords (down) Winter wheat; Climate change; Adaptation; Uncertainty; Europe; food security; model hadgem1; physical-properties; regional climate; change impacts; field-scale; land-use; yield; nitrogen; variability  
  Abstract Wheat yields in Europe have shown stagnating trends during the last two decades, partly attributed to climate change. Such developments challenge the needs for increased production, in particular at higher latitudes, to meet increasing global demands and expected productivity reductions at lower latitudes. Climate change projections from three General Circulation Models or GCMs (UKMO-HadGEM1, INM-GM3.0 and CSIRO-Mk3.1) for the A1FI SIZES emission scenario for 2000 to 2100 were downscaled at a northern latitude location (Foulum, Denmark) using LARS-WG5.3. The scenarios accounted for changes in temperature, precipitation and atmospheric CO2 concentration. In addition, three temperature-variability scenarios were included assuming different levels of decreased temperature variability in winter and increased in summer. Crop yield was simulated for the different climate change scenarios by a calibrated version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3-1.2 Mg ha(-1)) in the medium-term (2030-2050), but not enough to cope with expected increases in demand for food and feed. Optimum management added up to 1.8 Mg ha(-1). Genetic modifications regarding winter wheat crop development exhibit the greatest sensitivity to climate and larger potential for improvement (+3.8 Mg ha(-1)). The results consistently points towards need for cultivars with a longer reproductive phases (2.9-7.5% per 1 degrees C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments of optimal phenotypic characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-1923 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ftnotmacsur Approved no  
  Call Number MA @ admin @ Serial 4630  
Permanent link to this record
 

 
Author Schils, R.; Olesen, J.E.; Kersebaum, K.-C.; Rijk, B.; Oberforster, M.; Kalyada, V.; Khitrykau, M.; Gobin, A.; Kirchev, H.; Manolova, V.; Manolov, I.; Trnka, M.; Hlavinka, P.; Palosuo, T.; Peltonen-Sainio, P.; Jauhiainen, L.; Lorgeou, J.; Marrou, H.; Danalatos, N.; Archontoulis, S.; Fodor, N.; Spink, J.; Roggero, P.P.; Bassu, S.; Pulina, A.; Seehusen, T.; Uhlen, A.K.; Zylowska, K.; Nierobca, A.; Kozyra, J.; Silva, J.V.; Macas, B.M.; Coutinho, J.; Ion, V.; Takac, J.; Ines Minguez, M.; Eckersten, H.; Levy, L.; Herrera, J.M.; Hiltbrunner, J.; Kryvobok, O.; Kryvoshein, O.; Sylvester-Bradley, R.; Kindred, D.; Topp, C.F.E.; Boogaard, H.; de Groot, H.; Lesschen, J.P.; van Bussel, L.; Wolf, J.; Zijlstra, M.; van Loon, M.P.; van Ittersum, M.K. doi  openurl
  Title Cereal yield gaps across Europe Type Journal Article
  Year 2018 Publication European Journal of Agronomy Abbreviated Journal Europ. J. Agron.  
  Volume 101 Issue Pages 109-120  
  Keywords (down) Wheat, Barley, Grain maize, Crop modelling, Yield potential, Nitrogen; Nitrogen Use Efficiency; Sustainable Intensification; Climate-Change; Land-Use; Wheat; Soil; Agriculture; Impacts; Fertility; Emissions  
  Abstract Europe accounts for around 20% of the global cereal production and is a net exporter of ca. 15% of that production. Increasing global demand for cereals justifies questions as to where and by how much Europe’s production can be increased to meet future global market demands, and how much additional nitrogen (N) crops would require. The latter is important as environmental concern and legislation are equally important as production aims in Europe. Here, we used a country-by-country, bottom-up approach to establish statistical estimates of actual grain yield, and compare these to modelled estimates of potential yields for either irrigated or rainfed conditions. In this way, we identified the yield gaps and the opportunities for increased cereal production for wheat, barley and maize, which represent 90% of the cereals grown in Europe. The combined mean annual yield gap of wheat, barley, maize was 239 Mt, or 42% of the yield potential. The national yield gaps ranged between 10 and 70%, with small gaps in many north-western European countries, and large gaps in eastern and south-western Europe. Yield gaps for rainfed and irrigated maize were consistently lower than those of wheat and barley. If the yield gaps of maize, wheat and barley would be reduced from 42% to 20% of potential yields, this would increase annual cereal production by 128 Mt (39%). Potential for higher cereal production exists predominantly in Eastern Europe, and half of Europe’s potential increase is located in Ukraine, Romania and Poland. Unlocking the identified potential for production growth requires a substantial increase of the crop N uptake of 4.8 Mt. Across Europe, the average N uptake gaps, to achieve 80% of the yield potential, were 87, 77 and 43 kg N ha(-1) for wheat, barley and maize, respectively. Emphasis on increasing the N use efficiency is necessary to minimize the need for additional N inputs. Whether yield gap reduction is desirable and feasible is a matter of balancing Europe’s role in global food security, farm economic objectives and environmental targets.  
  Address 2019-01-07  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1161-0301 ISBN Medium  
  Area Expedition Conference  
  Notes CropM, TradeM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 5213  
Permanent link to this record
 

 
Author Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A. url  doi
openurl 
  Title Blue water scarcity and the economic impacts of future agricultural trade and demand Type Journal Article
  Year 2013 Publication Water Resource Research Abbreviated Journal Water Resource Research  
  Volume 49 Issue 6 Pages 3601-3617  
  Keywords (down) water scarcity; land use model; irrigation efficiency; trade liberalization; livestock consumption; modeling; land cover change; water budgets  
  Abstract An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0043-1397 ISBN Medium Article  
  Area Expedition Conference  
  Notes TradeM Approved no  
  Call Number MA @ admin @ Serial 4502  
Permanent link to this record
 

 
Author Ewert, F.; Rötter, R.P.; Bindi, M.; Webber, H.; Trnka, M.; Kersebaum, K.C.; Olesen, J.E.; van Ittersum, M.K.; Janssen, S.; Rivington, M.; Semenov, M.A.; Wallach, D.; Porter, J.R.; Stewart, D.; Verhagen, J.; Gaiser, T.; Palosuo, T.; Tao, F.; Nendel, C.; Roggero, P.P.; Bartošová, L.; Asseng, S. url  doi
openurl 
  Title Crop modelling for integrated assessment of risk to food production from climate change Type Journal Article
  Year 2015 Publication Environmental Modelling & Software Abbreviated Journal Env. Model. Softw.  
  Volume 72 Issue Pages 287-303  
  Keywords (down) uncertainty; scaling; integrated assessment; risk assessment; adaptation; crop models; agricultural land-use; change adaptation strategies; farming systems simulation; agri-environmental systems; enrichment face experiment; high-temperature stress; change impacts; nitrogen dynamics; atmospheric co2; spring wheat  
  Abstract The complexity of risks posed by climate change and possible adaptations for crop production has called for integrated assessment and modelling (IAM) approaches linking biophysical and economic models. This paper attempts to provide an overview of the present state of crop modelling to assess climate change risks to food production and to which extent crop models comply with IAM demands. Considerable progress has been made in modelling effects of climate variables, where crop models best satisfy IAM demands. Demands are partly satisfied for simulating commonly required assessment variables. However, progress on the number of simulated crops, uncertainty propagation related to model parameters and structure, adaptations and scaling are less advanced and lagging behind IAM demands. The limitations are considered substantial and apply to a different extent to all crop models. Overcoming these limitations will require joint efforts, and consideration of novel modelling approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1364-8152 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM, ft_macsur Approved no  
  Call Number MA @ admin @ Serial 4521  
Permanent link to this record
 

 
Author Dietrich, J.P.; Schmitz, C.; Lotze-Campen, H.; Popp, A.; Muller, C. url  doi
openurl 
  Title Forecasting technological change in agriculture-An endogenous implementation in a global, and use model Type Journal Article
  Year 2014 Publication Technological Forecasting and Social Change Abbreviated Journal Technological Forecasting and Social Change  
  Volume 81 Issue Pages 236-249  
  Keywords (down) Technological change; Land use; Agricultural productivity; Land use; intensity; Research and development; land-use; research expenditures; productivity growth; impact; deforestation; forest; yield; Business & Economics; Public Administration  
  Abstract Technological change in agriculture plays a decisive role for meeting future demands for agricultural goods. However, up to now, agricultural sector models and models on land use change have used technological change as an exogenous input due to various information and data deficiencies. This paper provides a first attempt towards an endogenous implementation based on a measure of agricultural land use intensity. We relate this measure to empirical data on investments in technological change. Our estimated yield elasticity with respect to research investments is 029 and production costs per area increase linearly with an increasing yield level. Implemented in the global land use model MAgPIE (”Model of Agricultural Production and its Impact on the Environment”) this approach provides estimates of future yield growth. Highest future yield increases are required in Sub-Saharan Africa, the Middle East and South Asia. Our validation with FAO data for the period 1995-2005 indicates that the model behavior is in line with observations. By comparing two scenarios on forest conservation we show that protecting sensitive forest areas in the future is possible but requires substantial investments into technological change. (C) 2013 Elsevier Inc. All rights reserved.  
  Address 2016-10-31  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0040-1625 ISBN Medium Article  
  Area Expedition Conference  
  Notes CropM Approved no  
  Call Number MA @ admin @ Serial 4789  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: