|   | 
Details
   web
Records
Author Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A.
Title Blue water scarcity and the economic impacts of future agricultural trade and demand Type Journal Article
Year 2013 Publication Water Resource Research Abbreviated Journal Water Resource Research
Volume 49 Issue 6 Pages 3601-3617
Keywords water scarcity; land use model; irrigation efficiency; trade liberalization; livestock consumption; modeling; land cover change; water budgets
Abstract An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1397 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4502
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems Type Journal Article
Year 2013 Publication Agricultural Systems Abbreviated Journal Agricultural Systems
Volume 117 Issue Pages 1-12
Keywords changed climate variability; dsp; epic; adaptation; water management; irrigation; simulating impacts; co2 concentration; crop production; productivity; maize; yield; growth; model; photosynthesis; agriculture
Abstract Short-term perspectives appear to be relevant in formulating adaptation measures to changed climate variability (CCV) as a part of the European Rural Development Policy (RDP). Indeed, short-run CCV is the variation that farmers would perceive to such an extent that a political demand would be generated for adapting support measures. This study evaluates some relevant agronomic and economic impacts of CCV as modelled in a near future time period at the catchment scale in a rural district in Sardinia (Italy). The effects of CCV are assessed in relation to the availability of irrigation water and the irrigation needs of maize. The Environmental Policy Integrated Climate (EPIC) model was used to simulate the impact of key climatic variables on the irrigation water requirements and yields of maize. A three-stage discrete stochastic programming model was then applied to simulate management and economic responses to those changes. The overall economic impact of a simulated CCV was found to be primarily caused by reduced stability in the future supply of irrigation water. Adaptations to this instability will most likely lead to a higher level of groundwater extraction and a reduction in the demand for labour. Changed climate variability will most likely reduce the income potential of small-scale farming. The most CCV-vulnerable farm typologies were identified, and the implications were discussed in relation to the development of adaptation measures within the context of the Common Agricultural Policy of European Union. (C) 2013 Elsevier Ltd. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0308521x ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4489
Permanent link to this record
 

 
Author Dono, G.; Cortignani, R.; Doro, L.; Giraldo, L.; Ledda, L.; Pasqui, M.; Roggero, P.P.
Title An integrated assessment of the impacts of changing climate variability on agricultural productivity and profitability in an irrigated Mediterranean catchment Type Journal Article
Year 2013 Publication Water Resource Management Abbreviated Journal Water Resource Manage.
Volume 27 Issue 10 Pages 3607-3622
Keywords discrete stochastic programming; climate change variability; adaptation to climate change; net evapotranspiration and irrigation requirements; water availability; epic crops model; economic impact of climate change; precipitation; uncertainty; region; series; yield; model; scale; wheat; gis
Abstract Climate change is likely to have a profound effect on many agricultural variables, although the extent of its influence will vary over the course of the annual farm management cycle. Consequently, the effect of different and interconnected physical, technical and economic factors must be modeled in order to estimate the effects of climate change on agricultural productivity. Such modeling commonly makes use of indicators that summarize the among environmental factors that are considered when farmers plan their activities. This study uses net evapotranspiration (ETN), estimated using EPIC, as a proxy index for the physical factors considered by farmers when managing irrigation. Recent trends suggest that the probability distribution function of ETN may continue to change in the near future due to changes in the irrigation needs of crops. Also, water availability may continue to vary due to changes in the rainfall regime. The impacts of the uncertainties related to these changes on costs are evaluated using a Discrete Stochastic Programming model representing an irrigable Mediterranean area where limited water is supplied from a reservoir. In this context, adaptation to climate change can be best supported by improvements to the collective irrigation systems, rather than by measures aimed at individual farms such as those contained within the rural development policy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-4741 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4487
Permanent link to this record
 

 
Author Leogrande, R.; Lopedota, O.; Montemurro, F.; Vitti, C.; Ventrella, D.
Title Effects of irrigation regime and salinity on soil characteristics and yield of tomato Type Journal Article
Year 2012 Publication Italian Journal of Agronomy Abbreviated Journal Ital. J. Agron.
Volume 7 Issue 1 Pages 8
Keywords saline water; irrigation volume; Lycopersicon esculentum; soil solution
Abstract A field experiment was conducted in Mediterranean conditions to evaluate the effects of different irrigation volumes and water quality on yield performance of tomato crop. The tomato crop was irrigated reestablishing 50 (I1), 75 (I2) and 100% (I3) of the crop evapotranspiration (ETc) with two water quality: fresh water with EC 0.9 dS m-1 (FW) and saline water with EC 6 dSm-1 (SW). At harvest, total and marketable yield, weight, number, total soluble solids (TSS) and dry matter of fruit were calculated, The results showed no statistical differences among the three different irrigation volumes on tomato yield and quality. The salinity treatment did not affect yield, probably because the soil salinity in the root zone on average remained below the threshold of tomato salt tolerance. Instead, salinity improved fruit quality parameters as dry matter and TSS by 13 and 8%, respectively. After the first field application of saline water, soil saturated extract cations (SSEC), electrical conductivity of soil paste extract (ECe), sodium absorption ratio (SAR) and exchangeable sodium percentage (ESP) cations increased; the largest increase of cations, in particular of Na, occurred in the top layer. At the end of the experiment, the absolute value of SSEC, ECe and SAR, for all the effects studied, were lower than those recorded in 2007. This behavior was suitable to the reduced volumes of treatments administered in 2009 in respect to the 2007. Furthermore, the higher total rainfall recorded in 2009 increased the leaching and downward movement of salts out of the sampling depth.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2039-6805 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4476
Permanent link to this record
 

 
Author Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.; Siebert, S.; Webber, H.; Zhao, G.; Ewert, F.
Title Heat stress is overestimated in climate impact studies for irrigated agriculture Type Journal Article
Year 2017 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 12 Issue 5 Pages 054023
Keywords heat stress; climate change impact assessment; irrigation; canopy temperature; CANOPY TEMPERATURE; WINTER-WHEAT; WATER-STRESS; CROP YIELDS; GROWTH; MAIZE; DROUGHT; UNCERTAINTY; ENVIRONMENT; PHENOLOGY
Abstract Climate change will increase the number and severity of heat waves, and is expected to negatively affect crop yields. Here we show for wheat and maize across Europe that heat stress is considerably reduced by irrigation due to surface cooling for both current and projected future climate. We demonstrate that crop heat stress impact assessments should be based on canopy temperature because simulations with air temperatures measured at standard weather stations cannot reproduce differences in crop heat stress between irrigated and rainfed conditions. Crop heat stress was overestimated on irrigated land when air temperature was used with errors becoming larger with projected climate change. Corresponding errors in mean crop yield calculated across Europe for baseline climate 1984-2013 of 0.2 Mg yr(-1) (2%) and 0.6 Mg yr(-1) (5%) for irrigated winter wheat and irrigated grain maize, respectively, would increase to up to 1.5 Mg yr (1) (16%) for irrigated winter wheat and 4.1 Mg yr (1) (39%) for irrigated grain maize, depending on the climate change projection/GCM combination considered. We conclude that climate change impact assessments for crop heat stress need to account explicitly for the impact of irrigation.
Address 2017-06-22
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 5035
Permanent link to this record