|   | 
Details
   web
Records
Author Lorite, I.J.; García-Vila, M.; Santos, C.; Ruiz-Ramos, M.; Fereres, E.
Title AquaData and AquaGIS: Two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop Type Journal Article
Year 2013 Publication Computers and Electronics in Agriculture Abbreviated Journal Computers and Electronics in Agriculture
Volume 96 Issue Pages 227-237
Keywords (up) software tool; aquacrop; crop simulation model; geographic information system; spatial aggregation; fao crop model; irrigation management; iberian peninsula; southern spain; climate models; impacts; program; europe; system
Abstract The crop simulation model AquaCrop, recently developed by FAO can be used for a wide range of purposes. However, in its present form, its use over large areas or for applications that require a large number of simulations runs (e.g., long-term analysis), is not practical without developing software to facilitate such applications. Two tools for managing the inputs and outputs of AquaCrop, named AquaData and AquaGIS, have been developed for this purpose and are presented here. Both software utilities have been programmed in Delphi v. 5 and in addition, AquaGIS requires the Geographic Information System (GIS) programming tool MapObjects. These utilities allow the efficient management of input and output files, along with a GIS module to develop spatial analysis and effect spatial visualization of the results, facilitating knowledge dissemination. A sample of application of the utilities is given here, as an AquaCrop simulation analysis of impact of climate change on wheat yield in Southern Spain, which requires extensive input data preparation and output processing. The use of AquaCrop without the two utilities would have required approximately 1000 h of work, while the utilization of AquaData and AquaGIS reduced that time by more than 99%. Furthermore, the use of GIS, made it possible to perform a spatial analysis of the results, thus providing a new option to extend the use of the AquaCrop model to scales requiring spatial and temporal analyses. (C) 2013 Elsevier B.V. All rights reserved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-1699 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4609
Permanent link to this record
 

 
Author Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G.
Title Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity Type Journal Article
Year 2012 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany
Volume 81 Issue Pages 1-10
Keywords (up) stomatal density; leaf gas exchanges; transpiration; salt tolerance; osmotic adjustment; salt-stress tolerance; water-use efficiency; nacl salinity; hydraulic conductivity; irrigation water; dynamic indexes; leaf expansion; abscisic-acid; growth; plants
Abstract Water and soil salinization are major constraints to agricultural productions because plant adaptation to hyperosmotic environments is generally associated to reduced growth and ultimately yield loss. Understanding the physiological/molecular mechanisms that link adaptation and growth is one of the greatest challenges in plant stress research since it would allow us to better define strategies to improve crop salt tolerance. In this study we attempted to establish a functional link between morphological and physiological traits in strawberry in order to identify margins to “uncouple” plant growth and stress adaptation. Two strawberry cultivars, Elsanta and Elsinore, were grown under 0, 10.20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomata! density (173 vs. 234 stomata mm(-2) in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate of Elsanta (14.7 g H2O plant(-1) h(-1)) respect to Elsinore (17.7 g H2O plant(-1) h(-1)) most likely delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. Although we cannot rule out the contribution of other physiological and molecular mechanisms to the relatively higher tolerance of Elsanta, here we demonstrate that low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0098-8472 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4797
Permanent link to this record
 

 
Author Jägermeyr, J.; Gerten, D.; Schaphoff, S.; Heinke, J.; Lucht, W.; Rockström, J.
Title Integrated crop water management might sustainably halve the global food gap Type Journal Article
Year 2016 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 11 Issue 2 Pages 025002
Keywords (up) sustainable intensification; yield gap; water harvesting; conservation agriculture; irrigation efficiency; food security; climate change adaptation; sub-saharan africa; rain-fed agriculture; dry-spell mitigation; supplemental irrigation; climate-change; smallholder irrigation; environmental impacts; developing-countries; semiarid region; south-africa
Abstract As planetary boundaries are rapidly being approached, humanity has little room for additional expansion and conventional intensification of agriculture, while a growing world population further spreads the food gap. Ample evidence exists that improved on-farm water management can close water-related yield gaps to a considerable degree, but its global significance remains unclear. In this modeling study we investigate systematically to what extent integrated crop water management might contribute to closing the global food gap, constrained by the assumption that pressure on water resources and land does not increase. Using a process-based bio-/agrosphere model, we simulate the yield-increasing potential of elevated irrigation water productivity (including irrigation expansion with thus saved water) and optimized use of in situ precipitation water (alleviated soil evaporation, enhanced infiltration, water harvesting for supplemental irrigation) under current and projected future climate (from 20 climate models, with and without beneficial CO2 effects). Results show that irrigation efficiency improvements can save substantial amounts of water in many river basins (globally 48% of non-productive water consumption in an ‘ambitious’ scenario), and if rerouted to irrigate neighboring rainfed systems, can boost kcal production significantly (26% global increase). Low-tech solutions for small-scale farmers on water-limited croplands show the potential to increase rainfed yields to a similar extent. In combination, the ambitious yet achievable integrated water management strategies explored in this study could increase global production by 41% and close the water-related yield gap by 62%. Unabated climate change will have adverse effects on crop yields in many regions, but improvements in water management as analyzed here can buffer such effects to a significant degree.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, TradeM Approved no
Call Number MA @ admin @ Serial 4733
Permanent link to this record
 

 
Author Sanz-Cobena, A.; Sánchez-Martín, L.; García-Torres, L.; Vallejo, A.
Title Gaseous emissions of N2O and NO and NO3 − leaching from urea applied with urease and nitrification inhibitors to a maize (Zea mays) crop Type Journal Article
Year 2012 Publication Agriculture, Ecosystems and Environment Abbreviated Journal Agric. Ecosyst. Environ.
Volume 149 Issue Pages 64-73
Keywords (up) Urease inhibitor; Nitrogen losses; Irrigation; Nitrification
Abstract Urea has become the predominant source of synthetic nitrogen (N) fertilizer used throughout the world. Among the various available mitigation tools, urease inhibitors like NBPT have the most potential to improve efficiency of urea by reducing N losses, mainly via ammonia volatilization. However, there is a lack of information on the effect of N-(n-butyl) thiophosphoric triamide (NBPT) on other N losses such as gaseous emissions of N2O and NO and NO3− leaching. A two-year field experiment using irrigated maize (Zea mays) crop was carried out under Mediterranean conditions to evaluate the effectiveness of urea coated with NBPT (0.4%, w/w) alone and with both NBPT and nitrification inhibitor dicyandiamide (DCD) (0.4 and 3%, w/w, respectively) to mitigate N2O–N, NO–N and NO3−–N losses. The different treatments of U, U+NBPT and U+NBPT+DCD were applied to the maize crop in 2009 and then in 2010. The 2010 maize crop followed a fallow period, during which the 2009 crop residues were incorporated into the soil. Two different irrigation regimes were followed each year. In 2009, irrigation was controlled for the first 2 weeks following urea fertilization; whereas, the 2010 crop period was characterized by increased irrigation in the same period. After each treatment application, measurements of the changes in soil mineral N, gaseous emissions of N2O and NO, nitrate leaching and biomass production were made. N2O emissions were effectively abated by NBPT and NBPT+DCD and were reduced by 54 and 24%, respectively, in 2009. A reduction in nitrification rate by the inhibitors was also observed during 2009. In 2010 cropping period, NBPT reduced N2O emissions by 4%; while the combination of NBPT and DCD treatment reduced N2O emission by 43%. Yield-scaled N2O emissions were reduced by 50 and 18% by NBPT and the mixture of NBPT+DCD, respectively, in 2009. Applying inhibitors did not have any significant effect on yield-scaled N2O emissions in the 2010 crop period. Total NO losses from urea were 2.25 kg NO–N ha−1 in the 2009 crop period and 5 times lower in the following year; this may provide an indicator of the prevalence of nitrification as the main process in the production of N2O in the 2009 maize crop. Most of the NO3− was lost within the fallow period (i.e. 92, 81 and 75% of the total NO3− leached for U, U+NBPT and U+NBPT+DCD, respectively), so the incorporation of crop residues was not as effective as expected at reducing these N losses. Our study suggests that the effectiveness of NBPT and combination of NBPT+DCD in reducing N losses from applied urea is influenced by management practices, such as irrigation, and climatic conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4593
Permanent link to this record
 

 
Author Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A.
Title Blue water scarcity and the economic impacts of future agricultural trade and demand Type Journal Article
Year 2013 Publication Water Resource Research Abbreviated Journal Water Resource Research
Volume 49 Issue 6 Pages 3601-3617
Keywords (up) water scarcity; land use model; irrigation efficiency; trade liberalization; livestock consumption; modeling; land cover change; water budgets
Abstract An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0043-1397 ISBN Medium Article
Area Expedition Conference
Notes TradeM Approved no
Call Number MA @ admin @ Serial 4502
Permanent link to this record