|   | 
Details
   web
Records
Author Siebert, S.; Ewert, F.; Rezaei, E.E.; Kage, H.; Grass, R.
Title Impact of heat stress on crop yield-on the importance of considering canopy temperature Type Journal Article
Year 2014 Publication Environmental Research Letters Abbreviated Journal Environ. Res. Lett.
Volume 9 Issue 4 Pages
Keywords heat stress; crop yield; temperature; soil moisture; modelling; wheat; rye; harvest index; wheat yields; climate-change; winter-wheat; grain number; extreme heat; maize; variability; irrigation; drought
Abstract Increasing crop productivity while simultaneously reducing the environmental footprint of crop production is considered a major challenge for the coming decades. Even short episodes of heat stress can reduce crop yield considerably causing low resource use efficiency. Studies on the impact of heat stress on crop yields over larger regions generally rely on temperatures measured by standard weather stations at 2 m height. Canopy temperatures measured in this study in field plots of rye were up to 7 degrees C higher than air temperature measured at typical weather station height with the differences in temperatures controlled by soil moisture contents. Relationships between heat stress and grain number derived from controlled environment studies were only confirmed under field conditions when canopy temperature was used to calculate stress thermal time. By using hourly mean temperatures measured by 78 weather stations located across Germany for the period 1994-2009 it is estimated, that mean yield declines in wheat due to heat stress during flowering were 0.7% when temperatures are measured at 2 m height, but yield declines increase to 22% for temperatures measured at the ground. These results suggest that canopy temperature should be simulated or estimated to reduce uncertainty in assessing heat stress impacts on crop yield.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-9326 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4814
Permanent link to this record
 

 
Author Orsini, F.; Alnayef, M.; Bona, S.; Maggio, A.; Gianquinto, G.
Title Low stomatal density and reduced transpiration facilitate strawberry adaptation to salinity Type Journal Article
Year 2012 Publication Environmental and Experimental Botany Abbreviated Journal Environmental and Experimental Botany
Volume 81 Issue Pages 1-10
Keywords stomatal density; leaf gas exchanges; transpiration; salt tolerance; osmotic adjustment; salt-stress tolerance; water-use efficiency; nacl salinity; hydraulic conductivity; irrigation water; dynamic indexes; leaf expansion; abscisic-acid; growth; plants
Abstract Water and soil salinization are major constraints to agricultural productions because plant adaptation to hyperosmotic environments is generally associated to reduced growth and ultimately yield loss. Understanding the physiological/molecular mechanisms that link adaptation and growth is one of the greatest challenges in plant stress research since it would allow us to better define strategies to improve crop salt tolerance. In this study we attempted to establish a functional link between morphological and physiological traits in strawberry in order to identify margins to “uncouple” plant growth and stress adaptation. Two strawberry cultivars, Elsanta and Elsinore, were grown under 0, 10.20 and 40 mM NaCl. Upon salinization Elsanta plants maintained a larger and more functional leaf area compared to Elsinore plants, which were irreversibly damaged at 40 mM NaCl. The tolerance of Elsanta was correlated with a constitutive reduced transpirational flux due to low stomata! density (173 vs. 234 stomata mm(-2) in Elsanta and Elsinore, respectively), which turned out to be critical to pre-adapt plants to the oncoming stress. The reduced transpiration rate of Elsanta (14.7 g H2O plant(-1) h(-1)) respect to Elsinore (17.7 g H2O plant(-1) h(-1)) most likely delayed the accumulation of toxic ions into the leaves, preserved tissues dehydration and consented to adjust more effectively to the hyperosmotic environment. Although we cannot rule out the contribution of other physiological and molecular mechanisms to the relatively higher tolerance of Elsanta, here we demonstrate that low stomatal density may be beneficial for cultivars prescribed to be used in marginal environments in terms of salinity and/or drought. (C) 2012 Elsevier B.V. All rights reserved.
Address 2016-10-31
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0098-8472 ISBN Medium Article
Area Expedition Conference
Notes CropM Approved no
Call Number MA @ admin @ Serial 4797
Permanent link to this record
 

 
Author Ferrise, R.; Toscano, P.; Pasqui, M.; Moriondo, M.; Primicerio, J.; Semenov, M.A.; Bindi, M.
Title Monthly-to-seasonal predictions of durum wheat yield over the Mediterranean Basin Type Journal Article
Year 2015 Publication Climate Research Abbreviated Journal Clim. Res.
Volume 65 Issue Pages 7-21
Keywords yield predictions; seasonal forecasts; analogue forecasts; stochastic weather generator; empirical forecasting models; durum wheat; crop modelling; mediterranean basin; general-circulation model; scale climate indexes; crop yield; grain-yield; forecasts; simulation; region; precipitation; australia; europe
Abstract Uncertainty in weather conditions for the forthcoming growing season influences farmers’ decisions, based on their experience of the past climate, regarding the reduction of agricultural risk. Early within-season predictions of grain yield can represent a great opportunity for farmers to improve their management decisions and potentially increase yield and reduce potential risk. This study assessed 3 methods of within-season predictions of durum wheat yield at 10 sites across the Mediterranean Basin. To assess the value of within-season predictions, the model SiriusQuality2 was used to calculate wheat yields over a 9 yr period. Initially, the model was run with observed daily weather to obtain the reference yields. Then, yield predictions were calculated at a monthly time step, starting from 6 mo before harvest, by feeding the model with observed weather from the beginning of the growing season until a specific date and then with synthetic weather constructed using the 3 methods, historical, analogue or empirical, until the end of the growing season. The results showed that it is possible to predict durum wheat yield over the Mediterranean Basin with an accuracy of normalized root means squared error of <20%, from 5 to 6 mo earlier for the historical and empirical methods and 3 mo earlier for the analogue method. Overall, the historical method performed better than the others. Nonetheless, the analogue and empirical methods provided better estimations for low-yielding and high-yielding years, thus indicating great potential to provide more accurate predictions for years that deviate from average conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0936-577x 1616-1572 ISBN Medium Article
Area Expedition Conference
Notes CropM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4696
Permanent link to this record
 

 
Author Vitali, A.; Lana, E.; Amadori, M.; Bernabucci, U.; Nardone, A.; Lacetera, N.
Title Analysis of factors associated with mortality of heavy slaughter pigs during transport and lairage Type Journal Article
Year 2014 Publication Journal of Animal Science Abbreviated Journal J. Anim. Sci.
Volume 92 Issue 11 Pages 5134-5141
Keywords Abattoirs/*statistics & numerical data; Animals; *Data Interpretation, Statistical; Humidity/adverse effects; Light/adverse effects; *Mortality; Retrospective Studies; Seasons; Swine/*physiology; Temperature; Time Factors; Transportation/*statistics & numerical data; lairage; mortality; pigs; temperature-humidity index; transport
Abstract The study was based on data collected during 5 yr (2003-2007) and was aimed at assessing the effects of the month, slaughter house of destination (differing for stocking density, openings, brightness, and cooling device types), length of the journey, and temperature-humidity index (THI) on mortality of heavy slaughter pigs (approximately 160 kg live weight) during transport and lairage. Data were obtained from 24,098 journeys and 3,676,153 pigs transported from 1,618 farms to 3 slaughter houses. Individual shipments were the unit of observation. The terms dead on arrival (DOA) and dead in pen (DIP) refer to pigs that died during transport and in lairage at the abattoir before slaughtering, respectively. These 2 variables were assessed as the dependent counts in separate univariate Poisson regressions. The independent variables assessed univariately in each set of regressions were month of shipment, slaughter house of destination, time traveled, and each combination of the month with the time traveled. Two separate piecewise regressions were done. One used DOA counts within THI levels over pigs transported as a dependent ratio and the second used DIP counts within THI levels over pigs from a transport kept in lairage as a dependent ratio. The THI was the sole independent variable in each case. The month with the greatest frequency of deaths was July with a risk ratio of 1.22 (confidence interval: 1.06-1.36; P < 0.05) and 1.27 (confidence interval: 1.06-1.51; P < 0.05) for DOA and DIP, respectively. The lower mortality risk ratios for DOA and DIP were recorded for January and March (P < 0.05). The aggregated data of the summer (June, July, and August) versus non-summer (January, March, September, and November) months showed a greater risk of pigs dying during the hot season when considering both transport and lairage (P < 0.05). The mortality risk ratio of DIP was lower at the slaughter house with the lowest stocking density (0.64 m(2)/100 kg live weight), large open windows on the roof and sidewalls, low brightness (40 lx) lights, and high-pressure sprinklers as cooling devices. The mortality risk ratio of DOA increased significantly for journeys longer than 2 h, whereas no relationship was found between length of transport and DIP. The piecewise analysis pointed out that 78.5 and 73.6 THI were the thresholds above which the mortality rate increased significantly for DOA and DIP, respectively. These results may help the pig industry to improve the welfare of heavy slaughter pigs during transport and lairage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1525-3163 (Electronic) 0021-8812 (Linking) ISBN Medium Article
Area Expedition Conference
Notes LiveM, ft_macsur Approved no
Call Number MA @ admin @ Serial 4641
Permanent link to this record
 

 
Author Mansouri, M.; Dumont, B.; Leemans, V.; Destain, M.-F.
Title Bayesian methods for predicting LAI and soil water content Type Journal Article
Year 2014 Publication Precision Agriculture Abbreviated Journal Precision Agric.
Volume 15 Issue 2 Pages 184-201
Keywords crop model; bayes; data assimilation; extended kalman filtering; particle filtering; variational filtering; leaf-area index; parameter-estimation; crop models; moisture; instruments; management; sensors; state
Abstract LAI of winter wheat (Triticum aestivum L.) and soil water content of the topsoil (200 mm) and of the subsoil (500 mm) were considered as state variables of a dynamic soil-crop system. This system was assumed to progress according to a Bayesian probabilistic state space model, in which real values of LAI and soil water content were daily introduced in order to correct the model trajectory and reach better future evolution. The chosen crop model was mini STICS which can reduce the computing and execution times while ensuring the robustness of data processing and estimation. To predict simultaneously state variables and model parameters in this non-linear environment, three techniques were used: extended Kalman filtering (EKF), particle filtering (PF), and variational filtering (VF). The significantly improved performance of the VF method when compared to EKF and PF is demonstrated. The variational filter has a low computational complexity and the convergence speed of states and parameters estimation can be adjusted independently. Detailed case studies demonstrated that the root mean square error of the three estimated states (LAI and soil water content of two soil layers) was smaller and that the convergence of all considered parameters was ensured when using VF. Assimilating measurements in a crop model allows accurate prediction of LAI and soil water content at a local scale. As these biophysical properties are key parameters in the crop-plant system characterization, the system has the potential to be used in precision farming to aid farmers and decision makers in developing strategies for site-specific management of inputs, such as fertilizers and water irrigation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1385-2256 ISBN Medium Article
Area Expedition Conference
Notes CropM, ftnotmacsur Approved no
Call Number MA @ admin @ Serial 4629
Permanent link to this record